Spaces:
Sleeping
Sleeping
| import weaviate | |
| from sentence_transformers import SentenceTransformer | |
| from langchain_community.document_loaders import BSHTMLLoader | |
| from pathlib import Path | |
| from lxml import html | |
| import logging | |
| from semantic_text_splitter import HuggingFaceTextSplitter | |
| from tokenizers import Tokenizer | |
| import json | |
| import os | |
| import re | |
| import logging | |
| weaviate_logger = logging.getLogger("httpx") | |
| weaviate_logger.setLevel(logging.WARNING) | |
| logger = logging.getLogger(__name__) | |
| logging.basicConfig(level=logging.INFO) | |
| ###################################################################### | |
| # MAINLINE | |
| # | |
| logger.info("#### MAINLINE ENTERED.") | |
| #pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML" | |
| pathString = "/app/inputDocs" | |
| chunks = [] | |
| webpageDocNames = [] | |
| page_contentArray = [] | |
| webpageChunks = [] | |
| webpageTitles = [] | |
| webpageChunksDocNames = [] | |
| ####################################################### | |
| # Read each text input file, parse it into a document, | |
| # chunk it, collect chunks and document name. | |
| logger.info("#### Read and chunk input text files.") | |
| for filename in os.listdir(pathString): | |
| logger.info(filename) | |
| path = Path(pathString + "/" + filename) | |
| filename = filename.rstrip(".html") | |
| webpageDocNames.append(filename) | |
| htmlLoader = BSHTMLLoader(path,"utf-8") | |
| htmlData = htmlLoader.load() | |
| title = htmlData[0].metadata['title'] | |
| page_content = htmlData[0].page_content | |
| # Clean data. Remove multiple newlines, etc. | |
| page_content = re.sub(r'\n+', '\n',page_content) | |
| page_contentArray.append(page_content); | |
| webpageTitles.append(title) | |
| max_tokens = 1000 | |
| tokenizer = Tokenizer.from_pretrained("bert-base-uncased") | |
| logger.debug(f"### tokenizer: {tokenizer}") | |
| splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True) | |
| chunksOnePage = splitter.chunks(page_content, chunk_capacity=50) | |
| chunks = [] | |
| for chnk in chunksOnePage: | |
| logger.debug(f"#### chnk in file: {chnk}") | |
| chunks.append(chnk) | |
| logger.debug(f"chunks: {chunks}") | |
| webpageChunks.append(chunks) | |
| webpageChunksDocNames.append(filename + "Chunks") | |
| logger.debug(f"### filename, title: {filename}, {title}") | |
| logger.debug(f"### webpageDocNames: {webpageDocNames}") | |
| ###################################################### | |
| # Connect to the Weaviate vector database. | |
| logger.info("#### Create Weaviate db client connection.") | |
| client = weaviate.connect_to_custom( | |
| http_host="127.0.0.1", | |
| http_port=8080, | |
| http_secure=False, | |
| grpc_host="127.0.0.1", | |
| grpc_port=50051, | |
| grpc_secure=False | |
| #read_timeout=600, | |
| #write_timeout=90 | |
| ) | |
| client.connect() | |
| ###################################################### | |
| # Create database webpage and chunks collections. | |
| #wpCollection = createWebpageCollection() | |
| #wpChunkCollection = createChunksCollection() | |
| logger.info("#### createWebpageCollection() entered.") | |
| if client.collections.exists("Documents"): | |
| client.collections.delete("Documents") | |
| class_obj = { | |
| "class": "Documents", | |
| "description": "For first attempt at loading a Weviate database.", | |
| "vectorizer": "text2vec-transformers", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizeClassName": False | |
| } | |
| }, | |
| "vectorIndexType": "hnsw", | |
| "vectorIndexConfig": { | |
| "distance": "cosine", | |
| }, | |
| "properties": [ | |
| { | |
| "name": "title", | |
| "dataType": ["text"], | |
| "description": "HTML doc title.", | |
| "vectorizer": "text2vec-transformers", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizePropertyName": True, | |
| "skip": False, | |
| "tokenization": "lowercase" | |
| } | |
| }, | |
| "invertedIndexConfig": { | |
| "bm25": { | |
| "b": 0.75, | |
| "k1": 1.2 | |
| }, | |
| } | |
| }, | |
| { | |
| "name": "content", | |
| "dataType": ["text"], | |
| "description": "HTML page content.", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizePropertyName": True, | |
| "tokenization": "whitespace" | |
| } | |
| } | |
| } | |
| ] | |
| } | |
| wpCollection = client.collections.create_from_dict(class_obj) | |
| logger.info("#### createChunksCollection() entered.") | |
| if client.collections.exists("Chunks"): | |
| client.collections.delete("Chunks") | |
| class_obj = { | |
| "class": "Chunks", | |
| "description": "Collection for document chunks.", | |
| "vectorizer": "text2vec-transformers", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizeClassName": True | |
| } | |
| }, | |
| "vectorIndexType": "hnsw", | |
| "vectorIndexConfig": { | |
| "distance": "cosine", | |
| }, | |
| "properties": [ | |
| { | |
| "name": "chunk", | |
| "dataType": ["text"], | |
| "description": "Single webpage chunk.", | |
| "vectorizer": "text2vec-transformers", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizePropertyName": False, | |
| "skip": False, | |
| "tokenization": "lowercase" | |
| } | |
| } | |
| }, | |
| { | |
| "name": "chunk_index", | |
| "dataType": ["int"] | |
| }, | |
| { | |
| "name": "webpage", | |
| "dataType": ["Documents"], | |
| "description": "Webpage content chunks.", | |
| "invertedIndexConfig": { | |
| "bm25": { | |
| "b": 0.75, | |
| "k1": 1.2 | |
| } | |
| } | |
| } | |
| ] | |
| } | |
| wpChunkCollection = client.collections.create_from_dict(class_obj) | |
| ########################################################### | |
| # Create document and chunks objects in the database. | |
| logger.info("#### Create page/doc and chunk db objects.") | |
| for i, className in enumerate(webpageDocNames): | |
| title = webpageTitles[i] | |
| logger.debug(f"## className, title: {className}, {title}") | |
| # Create Webpage Object | |
| page_content = page_contentArray[i] | |
| # Insert the document. | |
| wpCollectionObj_uuid = wpCollection.data.insert( | |
| { | |
| "name": className, | |
| "title": title, | |
| "content": page_content | |
| } | |
| ) | |
| # Insert the chunks for the document. | |
| for i2, chunk in enumerate(webpageChunks[i]): | |
| chunk_uuid = wpChunkCollection.data.insert( | |
| { | |
| "title": title, | |
| "chunk": chunk, | |
| "chunk_index": i2, | |
| "references": | |
| { | |
| "webpage": wpCollectionObj_uuid | |
| } | |
| } | |
| ) | |
| ############################################################################### | |
| # text contains prompt for vector DB. | |
| text = "human-made computer cognitive ability" | |
| ############################################################################### | |
| # Initial the the sentence transformer and encode the query prompt. | |
| logger.info(f"#### Encode text query prompt to create vectors. {text}") | |
| model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1') | |
| vector = model.encode(text) | |
| vectorList = [] | |
| logger.debug("#### Print vectors.") | |
| for vec in vector: | |
| vectorList.append(vec) | |
| logger.debug(f"vectorList: {vectorList[2]}") | |
| # Fetch chunks and print chunks. | |
| logger.info("#### Retrieve semchunks from db using vectors from prompt.") | |
| semChunks = wpChunkCollection.query.near_vector( | |
| near_vector=vectorList, | |
| distance=0.7, | |
| limit=3 | |
| ) | |
| logger.debug(f"### semChunks[0]: {semChunks}") | |
| # Print chunks, corresponding document and document title. | |
| logger.info("#### Print individual retrieved chunks.") | |
| for chunk in enumerate(semChunks.objects): | |
| logger.info(f"#### chunk: {chunk}") | |
| webpage_uuid = chunk[1].properties['references']['webpage'] | |
| logger.info(f"webpage_uuid: {webpage_uuid}") | |
| wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid) | |
| logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}") | |
| logger.info("#### Closing client db connection.") | |
| client.close() | |
| logger.info("#### Program terminating.") | |