Spaces:
Running
Running
// _ _ | |
// __ _____ __ ___ ___ __ _| |_ ___ | |
// \ \ /\ / / _ \/ _` \ \ / / |/ _` | __/ _ \ | |
// \ V V / __/ (_| |\ V /| | (_| | || __/ | |
// \_/\_/ \___|\__,_| \_/ |_|\__,_|\__\___| | |
// | |
// Copyright © 2016 - 2024 Weaviate B.V. All rights reserved. | |
// | |
// CONTACT: [email protected] | |
// | |
package projector | |
import ( | |
"context" | |
"fmt" | |
"time" | |
"github.com/danaugrs/go-tsne/tsne" | |
"github.com/pkg/errors" | |
"github.com/tailor-inc/graphql/language/ast" | |
"github.com/weaviate/weaviate/entities/models" | |
"github.com/weaviate/weaviate/entities/moduletools" | |
"github.com/weaviate/weaviate/entities/search" | |
"gonum.org/v1/gonum/mat" | |
) | |
type FeatureProjection struct { | |
Vector []float32 `json:"vector"` | |
} | |
func New() *FeatureProjector { | |
return &FeatureProjector{ | |
fixedSeed: time.Now().UnixNano(), | |
} | |
} | |
type FeatureProjector struct { | |
fixedSeed int64 | |
} | |
func (f *FeatureProjector) AdditionalPropertyDefaultValue() interface{} { | |
return &Params{} | |
} | |
func (f *FeatureProjector) AdditionalPropertyFn(ctx context.Context, | |
in []search.Result, params interface{}, limit *int, | |
argumentModuleParams map[string]interface{}, cfg moduletools.ClassConfig, | |
) ([]search.Result, error) { | |
if parameters, ok := params.(*Params); ok { | |
return f.Reduce(in, parameters) | |
} | |
return nil, errors.New("unknown params") | |
} | |
func (f *FeatureProjector) ExtractAdditionalFn(param []*ast.Argument) interface{} { | |
return parseFeatureProjectionArguments(param) | |
} | |
func (f *FeatureProjector) Reduce(in []search.Result, params *Params) ([]search.Result, error) { | |
if len(in) == 0 { | |
return nil, nil | |
} | |
if params == nil { | |
return nil, fmt.Errorf("no params provided") | |
} | |
dims := len(in[0].Vector) | |
if err := params.SetDefaultsAndValidate(len(in), dims); err != nil { | |
return nil, errors.Wrap(err, "invalid params") | |
} | |
matrix, err := f.vectorsToMatrix(in, dims, params) | |
if err != nil { | |
return nil, err | |
} | |
t := tsne.NewTSNE(*params.Dimensions, float64(*params.Perplexity), | |
float64(*params.LearningRate), *params.Iterations, false) | |
t.EmbedData(matrix, nil) | |
rows, cols := t.Y.Dims() | |
if rows != len(in) { | |
return nil, fmt.Errorf("incorrect matrix dimensions after t-SNE len %d != %d", len(in), rows) | |
} | |
for i := 0; i < rows; i++ { | |
vector := make([]float32, cols) | |
for j := range vector { | |
vector[j] = float32(t.Y.At(i, j)) | |
} | |
up := in[i].AdditionalProperties | |
if up == nil { | |
up = models.AdditionalProperties{} | |
} | |
up["featureProjection"] = &FeatureProjection{ | |
Vector: vector, | |
} | |
in[i].AdditionalProperties = up | |
} | |
return in, nil | |
} | |
func (f *FeatureProjector) vectorsToMatrix(in []search.Result, dims int, params *Params) (*mat.Dense, error) { | |
items := len(in) | |
// concat all vectors to build gonum dense matrix | |
mergedVectors := make([]float64, items*dims) | |
for i, obj := range in { | |
if l := len(obj.Vector); l != dims { | |
return nil, fmt.Errorf("inconsistent vector lengths found: %d and %d", dims, l) | |
} | |
for j, dim := range obj.Vector { | |
mergedVectors[i*dims+j] = float64(dim) | |
} | |
} | |
return mat.NewDense(len(in), dims, mergedVectors), nil | |
} | |