Spaces:
Sleeping
Sleeping
| import weaviate | |
| from weaviate.connect import ConnectionParams | |
| from weaviate.classes.init import AdditionalConfig, Timeout | |
| from sentence_transformers import SentenceTransformer | |
| from langchain_community.document_loaders import BSHTMLLoader | |
| from pathlib import Path | |
| from lxml import html | |
| import logging | |
| from semantic_text_splitter import HuggingFaceTextSplitter | |
| from tokenizers import Tokenizer | |
| import json | |
| import os | |
| import re | |
| import logging | |
| import llama_cpp | |
| from llama_cpp import Llama | |
| import streamlit as st | |
| import subprocess | |
| st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", unsafe_allow_html=True) | |
| st.markdown("<h6 style='text-align: center; color: #666666;'>V1</h6>", unsafe_allow_html=True) | |
| weaviate_logger = logging.getLogger("httpx") | |
| weaviate_logger.setLevel(logging.WARNING) | |
| logger = logging.getLogger(__name__) | |
| logging.basicConfig(level=logging.INFO) | |
| def runStartup(): | |
| result = subprocess.run(["bash", "startup.sh"], capture_output=True, text=True) | |
| logger(f"startup.sh stdout: {result.stdout}") | |
| logger(f"startup.sh stderr: {result.stderr}") | |
| logger(f"Return code: {result.returncode}") | |
| logger("### Running startup.sh") | |
| runStartup() | |
| # Function to load the CSS file | |
| def load_css(file_name): | |
| with open(file_name) as f: | |
| st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |
| # Load the custom CSS | |
| load_css(".streamlit/main.css") | |
| st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", unsafe_allow_html=True) | |
| st.markdown("<h6 style='text-align: center; color: #666666;'>V1</h6>", unsafe_allow_html=True) | |
| ###################################################################### | |
| # MAINLINE | |
| # | |
| logger.info("#### MAINLINE ENTERED.") | |
| #pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML" | |
| pathString = "/app/inputDocs" | |
| chunks = [] | |
| webpageDocNames = [] | |
| page_contentArray = [] | |
| webpageChunks = [] | |
| webpageTitles = [] | |
| webpageChunksDocNames = [] | |
| ###################################################### | |
| # Connect to the Weaviate vector database. | |
| logger.info("#### Create Weaviate db client connection.") | |
| client = weaviate.WeaviateClient( | |
| connection_params=ConnectionParams.from_params( | |
| http_host="localhost", | |
| http_port="8080", | |
| http_secure=False, | |
| grpc_host="localhost", | |
| grpc_port="50051", | |
| grpc_secure=False | |
| ), | |
| additional_config=AdditionalConfig( | |
| timeout=Timeout(init=60, query=1800, insert=1800), # Values in seconds | |
| ) | |
| ) | |
| client.connect() | |
| ####################################################### | |
| # Read each text input file, parse it into a document, | |
| # chunk it, collect chunks and document name. | |
| logger.info("#### Read and chunk input text files.") | |
| if not client.collections.exists("Documents") or not client.collections.exists("Documents") : | |
| for filename in os.listdir(pathString): | |
| logger.info(filename) | |
| path = Path(pathString + "/" + filename) | |
| filename = filename.rstrip(".html") | |
| webpageDocNames.append(filename) | |
| htmlLoader = BSHTMLLoader(path,"utf-8") | |
| htmlData = htmlLoader.load() | |
| title = htmlData[0].metadata['title'] | |
| page_content = htmlData[0].page_content | |
| # Clean data. Remove multiple newlines, etc. | |
| page_content = re.sub(r'\n+', '\n',page_content) | |
| page_contentArray.append(page_content); | |
| webpageTitles.append(title) | |
| max_tokens = 1000 | |
| tokenizer = Tokenizer.from_pretrained("bert-base-uncased") | |
| logger.debug(f"### tokenizer: {tokenizer}") | |
| splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True) | |
| chunksOnePage = splitter.chunks(page_content, chunk_capacity=50) | |
| chunks = [] | |
| for chnk in chunksOnePage: | |
| logger.debug(f"#### chnk in file: {chnk}") | |
| chunks.append(chnk) | |
| logger.debug(f"chunks: {chunks}") | |
| webpageChunks.append(chunks) | |
| webpageChunksDocNames.append(filename + "Chunks") | |
| logger.debug(f"### filename, title: {filename}, {title}") | |
| logger.debug(f"### webpageDocNames: {webpageDocNames}") | |
| ###################################################### | |
| # Create database webpage and chunks collections. | |
| #wpCollection = createWebpageCollection() | |
| #wpChunkCollection = createChunksCollection() | |
| logger.info("#### createWebpageCollection() entered.") | |
| if not client.collections.exists("Documents"): | |
| #client.collections.delete("Documents") | |
| class_obj = { | |
| "class": "Documents", | |
| "description": "For first attempt at loading a Weviate database.", | |
| "vectorizer": "text2vec-transformers", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizeClassName": False | |
| } | |
| }, | |
| "vectorIndexType": "hnsw", | |
| "vectorIndexConfig": { | |
| "distance": "cosine", | |
| }, | |
| "properties": [ | |
| { | |
| "name": "title", | |
| "dataType": ["text"], | |
| "description": "HTML doc title.", | |
| "vectorizer": "text2vec-transformers", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizePropertyName": True, | |
| "skip": False, | |
| "tokenization": "lowercase" | |
| } | |
| }, | |
| "invertedIndexConfig": { | |
| "bm25": { | |
| "b": 0.75, | |
| "k1": 1.2 | |
| }, | |
| } | |
| }, | |
| { | |
| "name": "content", | |
| "dataType": ["text"], | |
| "description": "HTML page content.", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizePropertyName": True, | |
| "tokenization": "whitespace" | |
| } | |
| } | |
| } | |
| ] | |
| } | |
| wpCollection = client.collections.create_from_dict(class_obj) | |
| logger.info("#### createChunksCollection() entered.") | |
| if not client.collections.exists("Chunks"): | |
| #client.collections.delete("Chunks") | |
| class_obj = { | |
| "class": "Chunks", | |
| "description": "Collection for document chunks.", | |
| "vectorizer": "text2vec-transformers", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizeClassName": True | |
| } | |
| }, | |
| "vectorIndexType": "hnsw", | |
| "vectorIndexConfig": { | |
| "distance": "cosine", | |
| }, | |
| "properties": [ | |
| { | |
| "name": "chunk", | |
| "dataType": ["text"], | |
| "description": "Single webpage chunk.", | |
| "vectorizer": "text2vec-transformers", | |
| "moduleConfig": { | |
| "text2vec-transformers": { | |
| "vectorizePropertyName": False, | |
| "skip": False, | |
| "tokenization": "lowercase" | |
| } | |
| } | |
| }, | |
| { | |
| "name": "chunk_index", | |
| "dataType": ["int"] | |
| }, | |
| { | |
| "name": "webpage", | |
| "dataType": ["Documents"], | |
| "description": "Webpage content chunks.", | |
| "invertedIndexConfig": { | |
| "bm25": { | |
| "b": 0.75, | |
| "k1": 1.2 | |
| } | |
| } | |
| } | |
| ] | |
| } | |
| wpChunkCollection = client.collections.create_from_dict(class_obj) | |
| ########################################################### | |
| # Create document and chunks objects in the database. | |
| if not client.collections.exists("Documents") : | |
| logger.info("#### Create page/doc db objects.") | |
| for i, className in enumerate(webpageDocNames): | |
| title = webpageTitles[i] | |
| logger.debug(f"## className, title: {className}, {title}") | |
| # Create Webpage Object | |
| page_content = page_contentArray[i] | |
| # Insert the document. | |
| wpCollectionObj_uuid = wpCollection.data.insert( | |
| { | |
| "name": className, | |
| "title": title, | |
| "content": page_content | |
| } | |
| ) | |
| if not client.collections.exists("Chunks") : | |
| logger.info("#### Create chunk db objects.") | |
| # Insert the chunks for the document. | |
| for i2, chunk in enumerate(webpageChunks[i]): | |
| chunk_uuid = wpChunkCollection.data.insert( | |
| { | |
| "title": title, | |
| "chunk": chunk, | |
| "chunk_index": i2, | |
| "references": | |
| { | |
| "webpage": wpCollectionObj_uuid | |
| } | |
| } | |
| ) | |
| ################################################################# | |
| # Initialize the LLM. | |
| model_path = "/app/llama-2-7b-chat.Q4_0.gguf" | |
| llm = Llama(model_path, | |
| #*, | |
| n_gpu_layers=0, | |
| split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER, | |
| main_gpu=0, | |
| tensor_split=None, | |
| vocab_only=False, | |
| use_mmap=True, | |
| use_mlock=False, | |
| kv_overrides=None, | |
| seed=llama_cpp.LLAMA_DEFAULT_SEED, | |
| n_ctx=512, | |
| n_batch=512, | |
| n_threads=8, | |
| n_threads_batch=16, | |
| rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, | |
| pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED, | |
| rope_freq_base=0.0, | |
| rope_freq_scale=0.0, | |
| yarn_ext_factor=-1.0, | |
| yarn_attn_factor=1.0, | |
| yarn_beta_fast=32.0, | |
| yarn_beta_slow=1.0, | |
| yarn_orig_ctx=0, | |
| logits_all=False, | |
| embedding=False, | |
| offload_kqv=True, | |
| last_n_tokens_size=64, | |
| lora_base=None, | |
| lora_scale=1.0, | |
| lora_path=None, | |
| numa=False, | |
| chat_format=None, | |
| chat_handler=None, | |
| draft_model=None, | |
| tokenizer=None, | |
| type_k=None, | |
| type_v=None, | |
| verbose=True | |
| ) | |
| def getRagData(promptText): | |
| ############################################################################### | |
| # Initial the the sentence transformer and encode the query prompt. | |
| logger.info(f"#### Encode text query prompt to create vectors. {text}") | |
| model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1') | |
| vector = model.encode(promptText) | |
| vectorList = [] | |
| logger.debug("#### Print vectors.") | |
| for vec in vector: | |
| vectorList.append(vec) | |
| logger.debug(f"vectorList: {vectorList[2]}") | |
| # Fetch chunks and print chunks. | |
| logger.info("#### Retrieve semchunks from db using vectors from prompt.") | |
| semChunks = wpChunkCollection.query.near_vector( | |
| near_vector=vectorList, | |
| distance=0.7, | |
| limit=3 | |
| ) | |
| logger.debug(f"### semChunks[0]: {semChunks}") | |
| # Print chunks, corresponding document and document title. | |
| ragData = "" | |
| logger.info("#### Print individual retrieved chunks.") | |
| for chunk in enumerate(semChunks.objects): | |
| logger.info(f"#### chunk: {chunk}") | |
| ragData = ragData + "\n" + chunk[0] | |
| webpage_uuid = chunk[1].properties['references']['webpage'] | |
| logger.info(f"webpage_uuid: {webpage_uuid}") | |
| wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid) | |
| logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}") | |
| #collection = client.collections.get("Chunks") | |
| return ragData | |
| # Display UI | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| if "sysTA" not in st.session_state: | |
| st.session_state.sysTA = st.text_area(label="sysTA",value="fdsaf fsdafdsa") | |
| elif "sysTAtext" in st.session_state: | |
| st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTAtext) | |
| else: | |
| st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTA) | |
| if "userpTA" not in st.session_state: | |
| userTextArea = st.text_area(label="userpTA",value="fdsaf fsdafdsa") | |
| elif "userpTAtext" in st.session_state: | |
| st.session_state.userpTA = st.text_area(label="userpTA",value=st.session_state.userpTAtext) | |
| else: | |
| st.session_state.userpTA = st.text_area(label="userpTA",value=st.session_state.userpTA) | |
| with col2: | |
| if "ragpTA" not in st.session_state: | |
| ragPromptTextArea = st.text_area(label="ragpTA",value="fdsaf fsdafdsa") | |
| elif "ragpTAtext" in st.session_state: | |
| st.session_state.ragpTA = st.text_area(label="ragpTA",value=st.session_state.ragpTAtext) | |
| else: | |
| st.session_state.ragTA = st.text_area(label="ragTA",value=st.session_state.ragTA) | |
| if "rspTA" not in st.session_state: | |
| responseTextArea = st.text_area(label="rspTA",value="fdsaf fsdafdsa") | |
| elif "rspTAtext" in st.session_state: | |
| st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTAtext) | |
| else: | |
| st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTA) | |
| def runLLM(prompt): | |
| max_tokens = 1000 | |
| temperature = 0.3 | |
| top_p = 0.1 | |
| echo = True | |
| stop = ["Q", "\n"] | |
| modelOutput = llm( | |
| prompt, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| echo=echo, | |
| stop=stop, | |
| ) | |
| result = modelOutput["choices"][0]["text"].strip() | |
| return(result) | |
| def setPrompt(pprompt,ragFlag): | |
| print("\n### setPrompt() entered. ragFlag: ",ragFlag) | |
| if ragFlag: | |
| ragPrompt = getRagData(pprompt) | |
| userPrompt = pprompt + "\n" + ragPrompt | |
| prompt = userPrompt | |
| userPrompt = "Using this information: " + ragPrompt \ | |
| + "process the following statement or question and produce a a response" \ | |
| + intialPrompt | |
| else: | |
| userPrompt = pprompt | |
| #prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]""" | |
| return userPrompt | |
| def on_submitButton_clicked(b): | |
| logger.debug("\n### on_submitButton_clicked") | |
| st.session_state.sysTAtext = st.session_state.sysTA | |
| logger.info(f"sysTAtext: {st.session_state.sysTAtext}") | |
| st.session_state.userpTAtext = setPrompt("","") | |
| st.session_state.userpTA = st.session_state.userpTAtext | |
| logger.info(f"userpTAtext: {st.session_state.userpTAtext}") | |
| st.session_state.rspTAtext = runLLM(st.session_state.userpTAtext) | |
| st.session_state.rspTA = st.session_state.rspTAtext | |
| logger.info(f"rspTAtext: {st.session_state.rspTAtext}") | |
| with st.sidebar: | |
| st.selectRag = st.checkbox("Enable Query With RAG",value=False,key="selectRag",help=None,on_change=None,args=None,kwargs=None,disabled=False,label_visibility="visible") | |
| st.submitButton = st.button("Run LLM Query",key=None,help=None,on_click=on_submitButton_clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False) | |
| #logger.info("#### Closing client db connection.") | |
| #client.close() | |
| #logger.info("#### Program terminating.") | |