Spaces:
Running
Running
import weaviate | |
from weaviate.connect import ConnectionParams | |
from weaviate.classes.init import AdditionalConfig, Timeout | |
from sentence_transformers import SentenceTransformer | |
from langchain_community.document_loaders import BSHTMLLoader | |
from pathlib import Path | |
from lxml import html | |
import logging | |
from semantic_text_splitter import HuggingFaceTextSplitter | |
from tokenizers import Tokenizer | |
import json | |
import os | |
import re | |
import llama_cpp | |
from llama_cpp import Llama | |
import streamlit as st | |
import subprocess | |
import time | |
import pprint | |
import io | |
import torch | |
import time | |
from datetime import datetime, timedelta | |
import threading | |
#from huggingface_hub import InferenceClient | |
try: | |
############################################# | |
# Logging setup including weaviate logging. # | |
############################################# | |
if 'logging' not in st.session_state: | |
weaviate_logger = logging.getLogger("httpx") | |
#weaviate_logger.setLevel(logging.WARNING) | |
weaviate_logger.setLevel(logging.DEBUG) | |
logger = logging.getLogger(__name__) | |
#logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s',level=logging.INFO) | |
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s',level=logging.DEBUG) | |
st.session_state.weaviate_logger = weaviate_logger | |
st.session_state.logger = logger | |
else: | |
weaviate_logger = st.session_state.weaviate_logger | |
logger = st.session_state.logger | |
# Set long session timeout for space. | |
#inference = InferenceClient(repo_id="MVPilgrim/SemanticSearch", timeout=1800) | |
logger.info("###################### Program Entry ############################") | |
logger.info(f"CUDA available: {torch.cuda.is_available()}") | |
logger.info(f"CUDA device count: {torch.cuda.device_count()}") | |
if torch.cuda.is_available(): | |
logger.info(f"CUDA device name: {torch.cuda.get_device_name(0)}") | |
########################################################################## | |
# Asynchonously run startup.sh which run text2vec-transformers # | |
# asynchronously and the Weaviate Vector Database server asynchronously. # | |
########################################################################## | |
def runStartup(): | |
logger.info("### Running startup.sh") | |
try: | |
subprocess.Popen(["/app/startup.sh"]) | |
# Wait for text2vec-transformers and Weaviate DB to initialize. | |
time.sleep(120) | |
#subprocess.run(["/app/cmd.sh 'ps -ef'"]) | |
displayStartupshLog() | |
except Exception as e: | |
emsg = str(e) | |
logger.error(f"### subprocess.run or displayStartup.shLog EXCEPTION. e: {emsg}") | |
logger.info("### Running startup.sh complete") | |
def displayStartupshLog(): | |
logger.info("### Displaying /app/startup.log") | |
with open("/app/startup.log", "r") as file: | |
line = file.readline().rstrip() | |
while line: | |
logger.info(line) | |
line = file.readline().rstrip() | |
logger.info("### End of /app/startup.log display.") | |
if 'runStartup' not in st.session_state: | |
st.session_state.runStartup = False | |
if 'runStartup' not in st.session_state: | |
logger.info("### runStartup still not in st.session_state after setting variable.") | |
with st.spinner('Restarting...'): | |
runStartup() | |
try: | |
displayStartupshLog() | |
except Exception as e2: | |
emsg = str(e2) | |
logger.error(f"#### Displaying startup.log EXCEPTION. e2: {emsg}") | |
######################################### | |
# Function to load the CSS syling file. # | |
######################################### | |
def load_css(file_name): | |
logger.info("#### load_css entered.") | |
with open(file_name) as f: | |
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True) | |
logger.info("#### load_css exited.") | |
if 'load_css' not in st.session_state: | |
load_css(".streamlit/main.css") | |
st.session_state.load_css = True | |
# Display UI heading. | |
st.markdown("<h1 style='text-align: center; color: #666666;'>LLM with RAG Prompting <br style='page-break-after: always;'>Proof of Concept</h1>", | |
unsafe_allow_html=True) | |
pathString = "/app/inputDocs" | |
chunks = [] | |
webpageDocNames = [] | |
page_contentArray = [] | |
webpageChunks = [] | |
webpageTitles = [] | |
webpageChunksDocNames = [] | |
############################################ | |
# Connect to the Weaviate vector database. # | |
############################################ | |
if 'client' not in st.session_state: | |
logger.info("#### Create Weaviate db client connection.") | |
client = weaviate.WeaviateClient( | |
connection_params=ConnectionParams.from_params( | |
http_host="localhost", | |
http_port="8080", | |
http_secure=False, | |
grpc_host="localhost", | |
grpc_port="50051", | |
grpc_secure=False | |
), | |
additional_config=AdditionalConfig( | |
timeout=Timeout(init=60, query=1800, insert=1800), # Values in seconds | |
) | |
) | |
for i in range(3): | |
try: | |
client.connect() | |
st.session_state.client = client | |
logger.info("#### Create Weaviate db client connection exited.") | |
break | |
except Exception as e: | |
emsg = str(e) | |
logger.error(f"### client.connect() EXCEPTION. e2: {emsg}") | |
time.sleep(45) | |
if i >= 3: | |
raise Exception("client.connect retries exhausted.") | |
else: | |
client = st.session_state.client | |
######################################################## | |
# Read each text input file, parse it into a document, # | |
# chunk it, collect chunks and document names. # | |
######################################################## | |
if not client.collections.exists("Documents") or not client.collections.exists("Chunks") : | |
logger.info("#### Read and chunk input RAG document files.") | |
for filename in os.listdir(pathString): | |
logger.debug(filename) | |
path = Path(pathString + "/" + filename) | |
filename = filename.rstrip(".html") | |
webpageDocNames.append(filename) | |
htmlLoader = BSHTMLLoader(path,"utf-8") | |
htmlData = htmlLoader.load() | |
title = htmlData[0].metadata['title'] | |
page_content = htmlData[0].page_content | |
# Clean data. Remove multiple newlines, etc. | |
page_content = re.sub(r'\n+', '\n',page_content) | |
page_contentArray.append(page_content) | |
webpageTitles.append(title) | |
max_tokens = 1000 | |
tokenizer = Tokenizer.from_pretrained("bert-base-uncased") | |
logger.info(f"### tokenizer: {tokenizer}") | |
splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True) | |
chunksOnePage = splitter.chunks(page_content, chunk_capacity=50) | |
chunks = [] | |
for chnk in chunksOnePage: | |
logger.debug(f"#### chnk in file: {chnk}") | |
chunks.append(chnk) | |
logger.debug(f"chunks: {chunks}") | |
webpageChunks.append(chunks) | |
webpageChunksDocNames.append(filename + "Chunks") | |
logger.info(f"### filename, title: {filename}, {title}") | |
logger.info(f"### webpageDocNames: {webpageDocNames}") | |
logger.info("#### Read and chunk input RAG document files.") | |
############################################################# | |
# Create database documents and chunks schemas/collections. # | |
# Each chunk schema points to its corresponding document. # | |
############################################################# | |
if not client.collections.exists("Documents"): | |
logger.info("#### Create documents schema/collection started.") | |
class_obj = { | |
"class": "Documents", | |
"description": "For first attempt at loading a Weviate database.", | |
"vectorizer": "text2vec-transformers", | |
"moduleConfig": { | |
"text2vec-transformers": { | |
"vectorizeClassName": False | |
} | |
}, | |
"vectorIndexType": "hnsw", | |
"vectorIndexConfig": { | |
"distance": "cosine", | |
}, | |
"properties": [ | |
{ | |
"name": "title", | |
"dataType": ["text"], | |
"description": "HTML doc title.", | |
"vectorizer": "text2vec-transformers", | |
"moduleConfig": { | |
"text2vec-transformers": { | |
"vectorizePropertyName": True, | |
"skip": False, | |
"tokenization": "lowercase" | |
} | |
}, | |
"invertedIndexConfig": { | |
"bm25": { | |
"b": 0.75, | |
"k1": 1.2 | |
}, | |
} | |
}, | |
{ | |
"name": "content", | |
"dataType": ["text"], | |
"description": "HTML page content.", | |
"moduleConfig": { | |
"text2vec-transformers": { | |
"vectorizePropertyName": True, | |
"tokenization": "whitespace" | |
} | |
} | |
} | |
] | |
} | |
wpCollection = client.collections.create_from_dict(class_obj) | |
st.session_state.wpCollection = wpCollection | |
logger.info("#### Create documents schema/collection ended.") | |
else: | |
wpCollection = client.collections.get("Documents") | |
st.session_state.wpCollection = wpCollection | |
# Create chunks in db. | |
if not client.collections.exists("Chunks"): | |
logger.info("#### create document chunks schema/collection started.") | |
#client.collections.delete("Chunks") | |
class_obj = { | |
"class": "Chunks", | |
"description": "Collection for document chunks.", | |
"vectorizer": "text2vec-transformers", | |
"moduleConfig": { | |
"text2vec-transformers": { | |
"vectorizeClassName": True | |
} | |
}, | |
"vectorIndexType": "hnsw", | |
"vectorIndexConfig": { | |
"distance": "cosine" | |
}, | |
"properties": [ | |
{ | |
"name": "chunk", | |
"dataType": ["text"], | |
"description": "Single webpage chunk.", | |
"vectorizer": "text2vec-transformers", | |
"moduleConfig": { | |
"text2vec-transformers": { | |
"vectorizePropertyName": False, | |
"skip": False, | |
"tokenization": "lowercase" | |
} | |
} | |
}, | |
{ | |
"name": "chunk_index", | |
"dataType": ["int"] | |
}, | |
{ | |
"name": "webpage", | |
"dataType": ["Documents"], | |
"description": "Webpage content chunks.", | |
"invertedIndexConfig": { | |
"bm25": { | |
"b": 0.75, | |
"k1": 1.2 | |
} | |
} | |
} | |
] | |
} | |
wpChunksCollection = client.collections.create_from_dict(class_obj) | |
st.session_state.wpChunksCollection = wpChunksCollection | |
logger.info("#### create document chunks schedma/collection ended.") | |
else: | |
wpChunksCollection = client.collections.get("Chunks") | |
st.session_state.wpChunksCollection = wpChunksCollection | |
################################################################## | |
# Create the actual document and chunks objects in the database. # | |
################################################################## | |
if 'dbObjsCreated' not in st.session_state: | |
logger.info("#### Create db document and chunk objects started.") | |
st.session_state.dbObjsCreated = True | |
for i, className in enumerate(webpageDocNames): | |
logger.info("#### Creating document object.") | |
title = webpageTitles[i] | |
logger.debug(f"## className, title: {className}, {title}") | |
# Create Webpage Object | |
page_content = page_contentArray[i] | |
# Insert the document. | |
wpCollectionObj_uuid = wpCollection.data.insert( | |
{ | |
"name": className, | |
"title": title, | |
"content": page_content | |
} | |
) | |
logger.info("#### Document object created.") | |
logger.info("#### Create chunk db objects.") | |
st.session_state.wpChunksCollection = wpChunksCollection | |
# Insert the chunks for the document. | |
for i2, chunk in enumerate(webpageChunks[i]): | |
chunk_uuid = wpChunksCollection.data.insert( | |
{ | |
"title": title, | |
"chunk": chunk, | |
"chunk_index": i2, | |
"references": | |
{ | |
"webpage": wpCollectionObj_uuid | |
} | |
} | |
) | |
logger.debug(f"Inserting chunk. title,chunk: {title}, {chunk}") | |
logger.info("#### Create chunk db objects created.") | |
logger.info("#### Create db document and chunk objects ended.") | |
####################### | |
# Initialize the LLM. # | |
####################### | |
model_path = "/app/llama-2-7b-chat.Q4_0.gguf" | |
#model_path = "/app/Llama-3.2-3B-Instruct-Q4_0.gguf" | |
#model_path = "Meta-Llama-3.1-8B-Instruct-Q8_0.gguf" | |
if 'llm' not in st.session_state: | |
logger.info("### Initializing LLM.") | |
llm = Llama(model_path, | |
#*, | |
n_gpu_layers=-1, | |
split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER, | |
main_gpu=0, | |
tensor_split=None, | |
vocab_only=False, | |
use_mmap=True, | |
use_mlock=False, | |
kv_overrides=None, | |
seed=llama_cpp.LLAMA_DEFAULT_SEED, | |
n_ctx=2048, | |
n_batch=512, | |
n_threads=8, | |
n_threads_batch=16, | |
rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, | |
pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED, | |
rope_freq_base=0.0, | |
rope_freq_scale=0.0, | |
yarn_ext_factor=-1.0, | |
yarn_attn_factor=1.0, | |
yarn_beta_fast=32.0, | |
yarn_beta_slow=1.0, | |
yarn_orig_ctx=0, | |
logits_all=False, | |
embedding=False, | |
offload_kqv=True, | |
last_n_tokens_size=64, | |
lora_base=None, | |
lora_scale=1.0, | |
lora_path=None, | |
numa=False, | |
chat_format="llama-2", | |
chat_handler=None, | |
draft_model=None, | |
tokenizer=None, | |
type_k=None, | |
type_v=None, | |
verbose=True | |
) | |
st.session_state.llm = llm | |
logger.info("### Initializing LLM completed.") | |
else: | |
llm = st.session_state.llm | |
##################################################### | |
# Get RAG data from vector db based on user prompt. # | |
##################################################### | |
def getRagData(promptText): | |
logger.info("#### getRagData() entered.") | |
############################################################################### | |
# Initial the the sentence transformer and encode the query prompt. | |
logger.debug(f"#### Encode text query prompt to create vectors. {promptText}") | |
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1') | |
vector = model.encode(promptText) | |
logLevel = logger.getEffectiveLevel() | |
if logLevel >= logging.DEBUG: | |
wrks = str(vector) | |
logger.debug(f"### vector: {wrks}") | |
vectorList = [] | |
for vec in vector: | |
vectorList.append(vec) | |
if logLevel >= logging.DEBUG: | |
logger.debug("#### Print vectors.") | |
wrks = str(vectorList) | |
logger.debug(f"vectorList: {wrks}") | |
# Fetch chunks and print chunks. | |
logger.debug("#### Retrieve semchunks from db using vectors from prompt.") | |
wpChunksCollection = st.session_state.wpChunksCollection | |
semChunks = wpChunksCollection.query.near_vector( | |
near_vector=vectorList, | |
distance=2.0, | |
#certainty=0.7, | |
limit=5 | |
) | |
if logLevel >= logging.DEBUG: | |
wrks = str(semChunks) | |
logger.debug(f"### semChunks[0]: {wrks}") | |
# Print chunks, corresponding document and document title. | |
ragData = "" | |
logger.debug("#### Print individual retrieved chunks.") | |
wpCollection = st.session_state.wpCollection | |
for chunk in enumerate(semChunks.objects): | |
logger.debug(f"#### chunk: {chunk}") | |
ragData = ragData + chunk[1].properties['chunk'] + "\n" | |
webpage_uuid = chunk[1].properties['references']['webpage'] | |
logger.debug(f"webpage_uuid: {webpage_uuid}") | |
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid) | |
logger.debug(f"### wpFromChunk title: {wpFromChunk.properties['title']}") | |
#collection = client.collections.get("Chunks") | |
if ragData == "" or ragData == None: | |
ragData = "None found." | |
logger.debug("#### ragData: {ragData}") | |
logger.info("#### getRagData() exited.") | |
return ragData | |
################################################# | |
# Retrieve all RAG data for the user to review. # | |
################################################# | |
def getAllRagData(): | |
logger.info("#### getAllRagData() entered.") | |
chunksCollection = client.collections.get("Chunks") | |
response = chunksCollection.query.fetch_objects() | |
wstrObjs = str(response.objects) | |
logger.debug(f"### response.objects: {wstrObjs}") | |
for o in response.objects: | |
wstr = o.properties | |
logger.debug(f"### o.properties: {wstr}") | |
logger.info("#### getAllRagData() exited.") | |
return wstrObjs | |
#################################################################### | |
# Prompt the LLM with the user's input and return the completion. # | |
#################################################################### | |
def runLLM(prompt): | |
logger = st.session_state.logger | |
logger.info("### runLLM entered.") | |
max_tokens = 1000 | |
temperature = 0.3 | |
top_p = 0.1 | |
echoVal = True | |
stop = ["Q", "\n"] | |
modelOutput = "" | |
#with st.spinner('Generating Completion (but slowly. 40+ seconds.)...'): | |
#with st.markdown("<h1 style='text-align: center; color: #666666;'>LLM with RAG Prompting <br style='page-break-after: always;'>Proof of Concept</h1>", | |
# unsafe_allow_html=True): | |
st.session_state.spinGenMsg = True | |
modelOutput = llm.create_chat_completion( | |
prompt | |
#max_tokens=max_tokens, | |
#temperature=temperature, | |
#top_p=top_p, | |
#echo=echoVal, | |
#stop=stop, | |
) | |
st.session_state.spinGenMsg = False | |
if modelOutput != "": | |
result = modelOutput["choices"][0]["message"]["content"] | |
else: | |
result = "No result returned." | |
#result = str(modelOutput) | |
logger.debug(f"### llmResult: {result}") | |
logger.info("### runLLM exited.") | |
return result | |
########################################################################## | |
# Build a llama-2 prompt from the user prompt and RAG input if selected. # | |
########################################################################## | |
def setPrompt(pprompt,ragFlag): | |
logger = st.session_state.logger | |
logger.info(f"### setPrompt() entered. ragFlag: {ragFlag}") | |
if ragFlag: | |
ragPrompt = getRagData(pprompt) | |
st.session_state.ragpTA = ragPrompt | |
if ragFlag != "None found.": | |
userPrompt = pprompt + " " \ | |
+ "Also, combine the following information with information in the LLM itself. " \ | |
+ "Use the combined information to generate the response. " \ | |
+ ragPrompt + " " | |
else: | |
userPrompt = pprompt | |
else: | |
userPrompt = pprompt | |
fullPrompt = [ | |
{"role": "system", "content": st.session_state.sysTA}, | |
{"role": "user", "content": userPrompt} | |
] | |
#fullPrompt = "<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n" | |
#fullPrompt += st.session_state.sysTA | |
#fullPrompt += "<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n" | |
#fullPrompt += userPrompt | |
#fullPrompt += "<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
st.session_state.userpTA = userPrompt | |
logger.debug(f"### fullPrompt: {fullPrompt}") | |
logger.info("setPrompt exited.") | |
return fullPrompt | |
########################## | |
# Display UI text areas. # | |
########################## | |
col1, col2 = st.columns(2) | |
with col1: | |
if 'spinGenMsg' not in st.session_state or st.session_state.spinGenMsg == False: | |
placeHolder = st.empty() | |
else: | |
elapsedTime = 0.00 | |
startTime = datetime.now() | |
st.session_state.spinGenMsg = False; | |
with st.spinner(f"Generating Completion..."): | |
st.session_state.sysTAtext = st.session_state.sysTA | |
logger.debug(f"sysTAtext: {st.session_state.sysTAtext}") | |
fullPrompt = setPrompt(st.session_state.userpTA,st.selectRag) | |
#fullPrompt = setPrompt(st.session_state.userpTA,st.selectRag) | |
#st.session_state.userpTA = wrklist[1]["content"] | |
logger.debug(f"userpTAtext: {st.session_state.userpTA}") | |
#rsp = runLLM(wrklist) | |
rsp = runLLM(fullPrompt) | |
st.session_state.rspTA = rsp | |
logger.debug(f"rspTAtext: {st.session_state.rspTA}") | |
#if "sysTA" not in st.session_state: | |
# st.session_state.sysTA = st.text_area(label="System Prompt",placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.") | |
#elif "sysTAtext" in st.session_state: | |
# st.session_state.sysTA = st.text_area(label="System Prompt",value=st.session_state.sysTAtext,placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.") | |
#else: | |
# st.session_state.sysTA = st.text_area(label="System Prompt",value=st.session_state.sysTA,placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.") | |
elapsedTime = datetime.now() - startTime | |
logger.info(f"#### elapsedTime: {elapsedTime}") | |
if "sysTA" not in st.session_state: | |
st.session_state.sysTA = st.text_area(label="System Prompt",placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.") | |
elif "sysTAtext" in st.session_state: | |
st.session_state.sysTA = st.text_area(label="System Prompt",value=st.session_state.sysTAtext,placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.") | |
else: | |
st.session_state.sysTA = st.text_area(label="System Prompt",value=st.session_state.sysTA,placeholder="You are a helpful AI assistant", help="Instruct the LLM about how to handle the user prompt.") | |
if "userpTA" not in st.session_state: | |
st.session_state.userpTA = st.text_area(label="User Prompt",placeholder="Prompt the LLM with a question or instruction.", \ | |
help="Enter a prompt for the LLM. No special characters needed.") | |
elif "userpTAtext" in st.session_state: | |
st.session_state.userpTA = st.text_area (label="User Prompt",value=st.session_state.userpTAtext,placeholder="Prompt the LLM with a question or instruction.", \ | |
help="Enter a prompt for the LLM. No special characters needed.") | |
else: | |
st.session_state.userpTA = st.text_area(label="User Prompt",value=st.session_state.userpTA,placeholder="Prompt the LLM with a question or instruction.", \ | |
help="Enter a prompt for the LLM. No special characters needed.") | |
with col2: | |
if "ragpTA" not in st.session_state: | |
st.session_state.ragpTA = st.text_area(label="RAG Response",placeholder="Output if RAG selected.",help="RAG output if enabled.") | |
elif "ragpTAtext" in st.session_state: | |
st.session_state.ragpTA = st.text_area(label="RAG Response",value=st.session_state.ragpTAtext,placeholder="Output if RAG selected.",help="RAG output if enabled.") | |
else: | |
st.session_state.ragpTA = st.text_area(label="RAG Response",value=st.session_state.ragpTA,placeholder="Output if RAG selected.",help="RAG output if enabled.") | |
if "rspTA" not in st.session_state: | |
st.session_state.rspTA = st.text_area(label="LLM Completion",placeholder="LLM completion.",help="Output area for LLM completion (response).") | |
elif "rspTAtext" in st.session_state: | |
st.session_state.rspTA = st.text_area(label="LLM Completion",value=st.session_state.rspTAtext,placeholder="LLM completion.",help="Output area for LLM completion (response).") | |
else: | |
st.session_state.rspTA = st.text_area(label="LLM Completion",value=st.session_state.rspTA,placeholder="LLM completion.",help="Output area for LLM completion (response).") | |
##################################### | |
# Run the LLM with the user prompt. # | |
##################################### | |
def on_runLLMButton_Clicked(): | |
logger = st.session_state.logger | |
logger.info("### on_runLLMButton_Clicked entered.") | |
st.session_state.spinGenMsg = True | |
logger.info("### on_runLLMButton_Clicked exited.") | |
######################################### | |
# Get all the RAG data for user review. # | |
######################################### | |
def on_getAllRagDataButton_Clicked(): | |
logger = st.session_state.logger | |
logger.info("### on_getAllRagButton_Clicked entered.") | |
st.session_state.ragpTA = getAllRagData(); | |
logger.info("### on_getAllRagButton_Clicked exited.") | |
####################################### | |
# Reset all the input, output fields. # | |
####################################### | |
def on_resetButton_Clicked(): | |
logger = st.session_state.logger | |
logger.info("### on_resetButton_Clicked entered.") | |
st.session_state.sysTA = "" | |
st.session_state.userpTA = "" | |
st.session_state.ragpTA = "" | |
st.session_state.rspTA = "" | |
st.selectRag .value = False | |
logger.info("### on_resetButton_Clicked exited.") | |
########################################### | |
# Display the sidebar with a checkbox and # | |
# text areas. # | |
########################################### | |
with st.sidebar: | |
st.selectRag = st.checkbox("Enable RAG",value=False,key="selectRag",help=None,on_change=None,args=None,kwargs=None,disabled=False,label_visibility="visible") | |
st.runLLMButton = st.button("Run LLM Prompt",key=None,help=None,on_click=on_runLLMButton_Clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False) | |
st.getAllRagDataButton = st.button("Get All Rag Data",key=None,help=None,on_click=on_getAllRagDataButton_Clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False) | |
st.resetButton = st.button("Reset",key=None,help=None,on_click=on_resetButton_Clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False) | |
logger.info("#### Program End Execution.") | |
except Exception as e: | |
try: | |
emsg = str(e) | |
logger.error(f"Program-wide EXCEPTION. e: {emsg}") | |
with open("/app/startup.log", "r") as file: | |
content = file.read() | |
logger.debug(content) | |
except Exception as e2: | |
emsg = str(e2) | |
logger.error(f"#### Displaying startup.log EXCEPTION. e2: {emsg}") | |