Spaces:
Sleeping
Sleeping
MVPilgrim
commited on
Commit
·
3882e3f
1
Parent(s):
c84172b
restore
Browse files- Dockerfile +71 -0
- docker-compose.yml +36 -0
- requirements.txt +18 -0
- semsearch.py +443 -0
- startup.sh +65 -0
Dockerfile
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
###############################################################################
|
2 |
+
#python environment, main app and startup script.
|
3 |
+
FROM python:3.11.5
|
4 |
+
#FROM python:3.11.9-slim
|
5 |
+
#FROM python:3.11.9-alpine
|
6 |
+
#FROM python:3.11-bookworm
|
7 |
+
|
8 |
+
ENTRYPOINT ["/app/startup.sh"]
|
9 |
+
#RUN apt-get update && \
|
10 |
+
# apt-get install -y libc6 && \
|
11 |
+
# rm -rf /var/lib/apt/lists/*
|
12 |
+
WORKDIR /app
|
13 |
+
|
14 |
+
#RUN ls -l / || ls -l /lib || ls -l /usr || ls -l /usr/lib6 || echo "### An ls failed."
|
15 |
+
|
16 |
+
COPY ./requirements.txt /app/requirements.txt
|
17 |
+
COPY ./semsearch.py /app/semsearch.py
|
18 |
+
COPY ./startup.sh /app/startup.sh
|
19 |
+
RUN chmod 755 /app/startup.sh
|
20 |
+
|
21 |
+
COPY ./multi-qa-MiniLM-L6-cos-v1 /app/multi-qa-MiniLM-L6-cos-v1
|
22 |
+
|
23 |
+
RUN mkdir -p /app/inputDocs
|
24 |
+
COPY ./inputDocs/* /app/inputDocs
|
25 |
+
RUN pip install --no-cache-dir --upgrade -r /app/requirements.txt
|
26 |
+
RUN pip install https://files.pythonhosted.org/packages/13/87/e0cb08c2d4bd7d38ab63816b306c8b1e7cfdc0e59bd54462e8b0df069078/semantic_text_splitter-0.6.3-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
|
27 |
+
RUN pip show semantic-text-splitter
|
28 |
+
|
29 |
+
RUN pip install llama_cpp_python
|
30 |
+
|
31 |
+
##############################################################################
|
32 |
+
# Install Weaviate
|
33 |
+
WORKDIR /app/weaviate
|
34 |
+
RUN wget -qO- https://github.com/weaviate/weaviate/releases/download/v1.24.10/weaviate-v1.24.10-linux-amd64.tar.gz | tar -xzf -
|
35 |
+
RUN ls -al /app/weaviate
|
36 |
+
|
37 |
+
# Set environment variables for Weaviate
|
38 |
+
ENV PATH="/app:/app/weaviate-v1.24.10-linux-x86_64:${PATH}"
|
39 |
+
# Expose the Weaviate port
|
40 |
+
EXPOSE 8080
|
41 |
+
|
42 |
+
#COPY Llama-2-7B-Chat-GGUF/llama-2-7b-chat.Q4_0.gguf /app
|
43 |
+
RUN cd /app; wget -v https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGUF/resolve/main/llama-2-7b-chat.Q4_0.gguf
|
44 |
+
|
45 |
+
##############################################################################
|
46 |
+
# Install text2vec-transformers
|
47 |
+
WORKDIR /app/text2vec-transformers
|
48 |
+
COPY --from=semitechnologies/transformers-inference:sentence-transformers-multi-qa-MiniLM-L6-cos-v1 /app /app/text2vec-transformers
|
49 |
+
COPY --from=semitechnologies/transformers-inference:sentence-transformers-multi-qa-MiniLM-L6-cos-v1 /usr/local/bin /app/text2vec-transformers/bin
|
50 |
+
|
51 |
+
COPY ./multi-qa-MiniLM-L6-cos-v1 /app/app/text2vec-transformers
|
52 |
+
|
53 |
+
ENV PATH="/app/text2vec-transformers:/app/text2vec-transformers/bin:${PATH}"
|
54 |
+
#RUN pip install -r requirements.txt
|
55 |
+
#RUN pip install nltk==3.8.1 optimum==1.13.2 onnxruntime==1.16.1 onnx==1.14.1
|
56 |
+
RUN ./custom_prerequisites.py
|
57 |
+
|
58 |
+
|
59 |
+
##############################
|
60 |
+
RUN useradd -m -u 1000 user
|
61 |
+
|
62 |
+
#############################################
|
63 |
+
# Specify /data volume.
|
64 |
+
VOLUME /data
|
65 |
+
|
66 |
+
##############################################################################
|
67 |
+
# Start the weaviate vector database, text2vec-transformers and the semantic search app.
|
68 |
+
#RUN /app/startup.sh
|
69 |
+
#RUN --mount=type=cache,target=/data,mode=777 /app/startup.sh
|
70 |
+
#RUN --mount=type=cache,target=/data,mode=777 echo "### Mounting /data"
|
71 |
+
CMD ["/app/startup.sh"]
|
docker-compose.yml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
version: '3.4'
|
3 |
+
services:
|
4 |
+
weaviate:
|
5 |
+
command:
|
6 |
+
- --host
|
7 |
+
- 0.0.0.0
|
8 |
+
- --port
|
9 |
+
- '8080'
|
10 |
+
- --scheme
|
11 |
+
- http
|
12 |
+
image: semitechnologies/weaviate:1.23.8
|
13 |
+
ports:
|
14 |
+
- 8080:8080
|
15 |
+
- 50051:50051
|
16 |
+
volumes:
|
17 |
+
- weaviate_data:/var/lib/weaviate
|
18 |
+
restart: on-failure:0
|
19 |
+
environment:
|
20 |
+
QUERY_DEFAULTS_LIMIT: 25
|
21 |
+
AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED: 'true'
|
22 |
+
PERSISTENCE_DATA_PATH: '/var/lib/weaviate'
|
23 |
+
DEFAULT_VECTORIZER_MODULE: 'text2vec-transformers'
|
24 |
+
TRANSFORMERS_INFERENCE_API: http://t2v-transformers:8080
|
25 |
+
ENABLE_MODULES: 'text2vec-transformers'
|
26 |
+
#ENABLE_MODULES: 'text2vec-cohere,text2vec-huggingface,text2vec-palm,text2vec-openai,generative-openai,generative-cohere,generative-palm,ref2vec-centroid,reranker-cohere,qna-openai'
|
27 |
+
#ENABLE_MODULES: 'text2vec-gpt4all'
|
28 |
+
#GPT4ALL_INFERENCE_API: "http://localhost:4891"
|
29 |
+
CLUSTER_HOSTNAME: 'node1'
|
30 |
+
t2v-transformers:
|
31 |
+
image: semitechnologies/transformers-inference:sentence-transformers-multi-qa-MiniLM-L6-cos-v1
|
32 |
+
environment:
|
33 |
+
ENABLE_CUDA: 0 # set to 1 to enable
|
34 |
+
volumes:
|
35 |
+
weaviate_data:
|
36 |
+
...
|
requirements.txt
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
weaviate-client==4.*
|
2 |
+
sentence-transformers
|
3 |
+
langchain
|
4 |
+
langchain_community
|
5 |
+
lxml
|
6 |
+
beautifulsoup4
|
7 |
+
|
8 |
+
transformers==4.34.1
|
9 |
+
fastapi==0.103.2
|
10 |
+
uvicorn==0.23.2
|
11 |
+
nltk==3.8.1
|
12 |
+
torch==2.0.1
|
13 |
+
sentencepiece==0.1.99
|
14 |
+
sentence-transformers==2.2.2
|
15 |
+
optimum==1.13.2
|
16 |
+
onnxruntime==1.16.1
|
17 |
+
onnx==1.14.1
|
18 |
+
ipywidgets
|
semsearch.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import weaviate
|
2 |
+
from weaviate.connect import ConnectionParams
|
3 |
+
from weaviate.classes.init import AdditionalConfig, Timeout
|
4 |
+
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from langchain_community.document_loaders import BSHTMLLoader
|
7 |
+
from pathlib import Path
|
8 |
+
from lxml import html
|
9 |
+
import logging
|
10 |
+
from semantic_text_splitter import HuggingFaceTextSplitter
|
11 |
+
from tokenizers import Tokenizer
|
12 |
+
import json
|
13 |
+
import os
|
14 |
+
import re
|
15 |
+
import logging
|
16 |
+
|
17 |
+
import llama_cpp
|
18 |
+
from llama_cpp import Llama
|
19 |
+
import ipywidgets as widgets
|
20 |
+
from IPython.display import display, clear_output
|
21 |
+
|
22 |
+
|
23 |
+
weaviate_logger = logging.getLogger("httpx")
|
24 |
+
weaviate_logger.setLevel(logging.DEBUG)
|
25 |
+
|
26 |
+
logger = logging.getLogger(__name__)
|
27 |
+
logging.basicConfig(level=logging.INFO)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
######################################################################
|
32 |
+
# MAINLINE
|
33 |
+
#
|
34 |
+
logger.info("#### MAINLINE ENTERED.")
|
35 |
+
|
36 |
+
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
|
37 |
+
pathString = "/app/inputDocs"
|
38 |
+
chunks = []
|
39 |
+
webpageDocNames = []
|
40 |
+
page_contentArray = []
|
41 |
+
webpageChunks = []
|
42 |
+
webpageTitles = []
|
43 |
+
webpageChunksDocNames = []
|
44 |
+
|
45 |
+
#####################################################################
|
46 |
+
# Create UI widgets.
|
47 |
+
output_widget = widgets.Output()
|
48 |
+
with output_widget:
|
49 |
+
print("### Create widgets entered.")
|
50 |
+
|
51 |
+
systemTextArea = widgets.Textarea(
|
52 |
+
value='',
|
53 |
+
placeholder='Enter System Prompt.',
|
54 |
+
description='Sys Prompt: ',
|
55 |
+
disabled=False,
|
56 |
+
layout=widgets.Layout(width='300px', height='80px')
|
57 |
+
)
|
58 |
+
|
59 |
+
userTextArea = widgets.Textarea(
|
60 |
+
value='',
|
61 |
+
placeholder='Enter User Prompt.',
|
62 |
+
description='User Prompt: ',
|
63 |
+
disabled=False,
|
64 |
+
layout=widgets.Layout(width='435px', height='110px')
|
65 |
+
)
|
66 |
+
|
67 |
+
ragPromptTextArea = widgets.Textarea(
|
68 |
+
value='',
|
69 |
+
placeholder='App generated prompt with RAG information.',
|
70 |
+
description='RAG Prompt: ',
|
71 |
+
disabled=False,
|
72 |
+
layout=widgets.Layout(width='580px', height='180px')
|
73 |
+
)
|
74 |
+
|
75 |
+
responseTextArea = widgets.Textarea(
|
76 |
+
value='',
|
77 |
+
placeholder='LLM generated response.',
|
78 |
+
description='LLM Resp: ',
|
79 |
+
disabled=False,
|
80 |
+
layout=widgets.Layout(width='780px', height='200px')
|
81 |
+
)
|
82 |
+
|
83 |
+
selectRag = widgets.Checkbox(
|
84 |
+
value=False,
|
85 |
+
description='Use RAG',
|
86 |
+
disabled=False
|
87 |
+
)
|
88 |
+
|
89 |
+
submitButton = widgets.Button(
|
90 |
+
description='Run Model.',
|
91 |
+
disabled=False,
|
92 |
+
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
93 |
+
tooltip='Click',
|
94 |
+
icon='check' # (FontAwesome names without the `fa-` prefix)
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
#######################################################
|
99 |
+
# Read each text input file, parse it into a document,
|
100 |
+
# chunk it, collect chunks and document name.
|
101 |
+
logger.info("#### Read and chunk input text files.")
|
102 |
+
for filename in os.listdir(pathString):
|
103 |
+
logger.info(filename)
|
104 |
+
path = Path(pathString + "/" + filename)
|
105 |
+
filename = filename.rstrip(".html")
|
106 |
+
webpageDocNames.append(filename)
|
107 |
+
htmlLoader = BSHTMLLoader(path,"utf-8")
|
108 |
+
htmlData = htmlLoader.load()
|
109 |
+
|
110 |
+
title = htmlData[0].metadata['title']
|
111 |
+
page_content = htmlData[0].page_content
|
112 |
+
|
113 |
+
# Clean data. Remove multiple newlines, etc.
|
114 |
+
page_content = re.sub(r'\n+', '\n',page_content)
|
115 |
+
|
116 |
+
page_contentArray.append(page_content);
|
117 |
+
webpageTitles.append(title)
|
118 |
+
max_tokens = 1000
|
119 |
+
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
|
120 |
+
logger.debug(f"### tokenizer: {tokenizer}")
|
121 |
+
splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
|
122 |
+
chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)
|
123 |
+
|
124 |
+
chunks = []
|
125 |
+
for chnk in chunksOnePage:
|
126 |
+
logger.debug(f"#### chnk in file: {chnk}")
|
127 |
+
chunks.append(chnk)
|
128 |
+
logger.debug(f"chunks: {chunks}")
|
129 |
+
webpageChunks.append(chunks)
|
130 |
+
webpageChunksDocNames.append(filename + "Chunks")
|
131 |
+
|
132 |
+
logger.debug(f"### filename, title: {filename}, {title}")
|
133 |
+
|
134 |
+
logger.debug(f"### webpageDocNames: {webpageDocNames}")
|
135 |
+
|
136 |
+
|
137 |
+
######################################################
|
138 |
+
# Connect to the Weaviate vector database.
|
139 |
+
logger.info("#### Create Weaviate db client connection.")
|
140 |
+
#client = weaviate.connect_to_custom(
|
141 |
+
# http_host="127.0.0.1",
|
142 |
+
# http_port=8080,
|
143 |
+
# http_secure=False,
|
144 |
+
# grpc_host="127.0.0.1",
|
145 |
+
# grpc_port=50051,
|
146 |
+
# grpc_secure=False,
|
147 |
+
# timeout=[600,600]
|
148 |
+
# #read_timeout=600,
|
149 |
+
# #write_timeout=90
|
150 |
+
#)
|
151 |
+
|
152 |
+
client = weaviate.WeaviateClient(
|
153 |
+
connection_params=ConnectionParams.from_params(
|
154 |
+
http_host="localhost",
|
155 |
+
http_port="8080",
|
156 |
+
http_secure=False,
|
157 |
+
grpc_host="localhost",
|
158 |
+
grpc_port="50051",
|
159 |
+
grpc_secure=False,
|
160 |
+
),
|
161 |
+
# auth_client_secret=weaviate.auth.AuthApiKey("secr3tk3y"),
|
162 |
+
# additional_headers={
|
163 |
+
# "X-OpenAI-Api-Key": os.getenv("OPENAI_APIKEY")
|
164 |
+
# },
|
165 |
+
additional_config=AdditionalConfig(
|
166 |
+
timeout=Timeout(init=60, query=1800, insert=1800), # Values in seconds
|
167 |
+
)
|
168 |
+
)
|
169 |
+
client.connect()
|
170 |
+
|
171 |
+
|
172 |
+
######################################################
|
173 |
+
# Create database webpage and chunks collections.
|
174 |
+
#wpCollection = createWebpageCollection()
|
175 |
+
#wpChunkCollection = createChunksCollection()
|
176 |
+
logger.info("#### createWebpageCollection() entered.")
|
177 |
+
if client.collections.exists("Documents"):
|
178 |
+
client.collections.delete("Documents")
|
179 |
+
|
180 |
+
class_obj = {
|
181 |
+
"class": "Documents",
|
182 |
+
"description": "For first attempt at loading a Weviate database.",
|
183 |
+
"vectorizer": "text2vec-transformers",
|
184 |
+
"moduleConfig": {
|
185 |
+
"text2vec-transformers": {
|
186 |
+
"vectorizeClassName": False
|
187 |
+
}
|
188 |
+
},
|
189 |
+
"vectorIndexType": "hnsw",
|
190 |
+
"vectorIndexConfig": {
|
191 |
+
"distance": "cosine",
|
192 |
+
},
|
193 |
+
"properties": [
|
194 |
+
{
|
195 |
+
"name": "title",
|
196 |
+
"dataType": ["text"],
|
197 |
+
"description": "HTML doc title.",
|
198 |
+
"vectorizer": "text2vec-transformers",
|
199 |
+
"moduleConfig": {
|
200 |
+
"text2vec-transformers": {
|
201 |
+
"vectorizePropertyName": True,
|
202 |
+
"skip": False,
|
203 |
+
"tokenization": "lowercase"
|
204 |
+
}
|
205 |
+
},
|
206 |
+
"invertedIndexConfig": {
|
207 |
+
"bm25": {
|
208 |
+
"b": 0.75,
|
209 |
+
"k1": 1.2
|
210 |
+
},
|
211 |
+
}
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"name": "content",
|
215 |
+
"dataType": ["text"],
|
216 |
+
"description": "HTML page content.",
|
217 |
+
"moduleConfig": {
|
218 |
+
"text2vec-transformers": {
|
219 |
+
"vectorizePropertyName": True,
|
220 |
+
"tokenization": "whitespace"
|
221 |
+
}
|
222 |
+
}
|
223 |
+
}
|
224 |
+
]
|
225 |
+
}
|
226 |
+
wpCollection = client.collections.create_from_dict(class_obj)
|
227 |
+
|
228 |
+
logger.info("#### createChunksCollection() entered.")
|
229 |
+
if client.collections.exists("Chunks"):
|
230 |
+
client.collections.delete("Chunks")
|
231 |
+
|
232 |
+
class_obj = {
|
233 |
+
"class": "Chunks",
|
234 |
+
"description": "Collection for document chunks.",
|
235 |
+
"vectorizer": "text2vec-transformers",
|
236 |
+
"moduleConfig": {
|
237 |
+
"text2vec-transformers": {
|
238 |
+
"vectorizeClassName": True
|
239 |
+
}
|
240 |
+
},
|
241 |
+
"vectorIndexType": "hnsw",
|
242 |
+
"vectorIndexConfig": {
|
243 |
+
"distance": "cosine",
|
244 |
+
},
|
245 |
+
"properties": [
|
246 |
+
{
|
247 |
+
"name": "chunk",
|
248 |
+
"dataType": ["text"],
|
249 |
+
"description": "Single webpage chunk.",
|
250 |
+
"vectorizer": "text2vec-transformers",
|
251 |
+
"moduleConfig": {
|
252 |
+
"text2vec-transformers": {
|
253 |
+
"vectorizePropertyName": False,
|
254 |
+
"skip": False,
|
255 |
+
"tokenization": "lowercase"
|
256 |
+
}
|
257 |
+
}
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"name": "chunk_index",
|
261 |
+
"dataType": ["int"]
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"name": "webpage",
|
265 |
+
"dataType": ["Documents"],
|
266 |
+
"description": "Webpage content chunks.",
|
267 |
+
|
268 |
+
"invertedIndexConfig": {
|
269 |
+
"bm25": {
|
270 |
+
"b": 0.75,
|
271 |
+
"k1": 1.2
|
272 |
+
}
|
273 |
+
}
|
274 |
+
}
|
275 |
+
]
|
276 |
+
}
|
277 |
+
wpChunkCollection = client.collections.create_from_dict(class_obj)
|
278 |
+
|
279 |
+
|
280 |
+
###########################################################
|
281 |
+
# Create document and chunks objects in the database.
|
282 |
+
logger.info("#### Create page/doc db objects.")
|
283 |
+
for i, className in enumerate(webpageDocNames):
|
284 |
+
title = webpageTitles[i]
|
285 |
+
logger.debug(f"## className, title: {className}, {title}")
|
286 |
+
# Create Webpage Object
|
287 |
+
page_content = page_contentArray[i]
|
288 |
+
# Insert the document.
|
289 |
+
wpCollectionObj_uuid = wpCollection.data.insert(
|
290 |
+
{
|
291 |
+
"name": className,
|
292 |
+
"title": title,
|
293 |
+
"content": page_content
|
294 |
+
}
|
295 |
+
)
|
296 |
+
logger.info("#### Create chunk db objects.")
|
297 |
+
# Insert the chunks for the document.
|
298 |
+
for i2, chunk in enumerate(webpageChunks[i]):
|
299 |
+
chunk_uuid = wpChunkCollection.data.insert(
|
300 |
+
{
|
301 |
+
"title": title,
|
302 |
+
"chunk": chunk,
|
303 |
+
"chunk_index": i2,
|
304 |
+
"references":
|
305 |
+
{
|
306 |
+
"webpage": wpCollectionObj_uuid
|
307 |
+
}
|
308 |
+
}
|
309 |
+
)
|
310 |
+
|
311 |
+
###############################################################################
|
312 |
+
# text contains prompt for vector DB.
|
313 |
+
text = "human-made computer cognitive ability"
|
314 |
+
|
315 |
+
|
316 |
+
###############################################################################
|
317 |
+
# Initial the the sentence transformer and encode the query prompt.
|
318 |
+
logger.info(f"#### Encode text query prompt to create vectors. {text}")
|
319 |
+
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
|
320 |
+
|
321 |
+
vector = model.encode(text)
|
322 |
+
vectorList = []
|
323 |
+
|
324 |
+
logger.debug("#### Print vectors.")
|
325 |
+
for vec in vector:
|
326 |
+
vectorList.append(vec)
|
327 |
+
logger.debug(f"vectorList: {vectorList[2]}")
|
328 |
+
|
329 |
+
# Fetch chunks and print chunks.
|
330 |
+
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
|
331 |
+
semChunks = wpChunkCollection.query.near_vector(
|
332 |
+
near_vector=vectorList,
|
333 |
+
distance=0.7,
|
334 |
+
limit=3
|
335 |
+
)
|
336 |
+
logger.debug(f"### semChunks[0]: {semChunks}")
|
337 |
+
|
338 |
+
# Print chunks, corresponding document and document title.
|
339 |
+
logger.info("#### Print individual retrieved chunks.")
|
340 |
+
for chunk in enumerate(semChunks.objects):
|
341 |
+
logger.info(f"#### chunk: {chunk}")
|
342 |
+
webpage_uuid = chunk[1].properties['references']['webpage']
|
343 |
+
logger.info(f"webpage_uuid: {webpage_uuid}")
|
344 |
+
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
|
345 |
+
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
|
346 |
+
|
347 |
+
|
348 |
+
|
349 |
+
####################################################################
|
350 |
+
#
|
351 |
+
collection = client.collections.get("Chunks")
|
352 |
+
#model = SentenceTransformer('../multi-qa-MiniLM-L6-cos-v1')
|
353 |
+
|
354 |
+
#################################################################
|
355 |
+
# Initialize the LLM.
|
356 |
+
model_path = "/app/llama-2-7b-chat.Q4_0.gguf"
|
357 |
+
llm = Llama(model_path,
|
358 |
+
#*,
|
359 |
+
n_gpu_layers=0,
|
360 |
+
split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER,
|
361 |
+
main_gpu=0,
|
362 |
+
tensor_split=None,
|
363 |
+
vocab_only=False,
|
364 |
+
use_mmap=True,
|
365 |
+
use_mlock=False,
|
366 |
+
kv_overrides=None,
|
367 |
+
seed=llama_cpp.LLAMA_DEFAULT_SEED,
|
368 |
+
n_ctx=512,
|
369 |
+
n_batch=512,
|
370 |
+
n_threads=8,
|
371 |
+
n_threads_batch=16,
|
372 |
+
rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
373 |
+
pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
|
374 |
+
rope_freq_base=0.0,
|
375 |
+
rope_freq_scale=0.0,
|
376 |
+
yarn_ext_factor=-1.0,
|
377 |
+
yarn_attn_factor=1.0,
|
378 |
+
yarn_beta_fast=32.0,
|
379 |
+
yarn_beta_slow=1.0,
|
380 |
+
yarn_orig_ctx=0,
|
381 |
+
logits_all=False,
|
382 |
+
embedding=False,
|
383 |
+
offload_kqv=True,
|
384 |
+
last_n_tokens_size=64,
|
385 |
+
lora_base=None,
|
386 |
+
lora_scale=1.0,
|
387 |
+
lora_path=None,
|
388 |
+
numa=False,
|
389 |
+
chat_format=None,
|
390 |
+
chat_handler=None,
|
391 |
+
draft_model=None,
|
392 |
+
tokenizer=None,
|
393 |
+
type_k=None,
|
394 |
+
type_v=None,
|
395 |
+
verbose=True
|
396 |
+
)
|
397 |
+
|
398 |
+
|
399 |
+
display(systemTextArea)
|
400 |
+
display(userTextArea)
|
401 |
+
display(ragPromptTextArea)
|
402 |
+
display(responseTextArea)
|
403 |
+
display(selectRag)
|
404 |
+
display(submitButton)
|
405 |
+
|
406 |
+
def setPrompt(pprompt,ragFlag):
|
407 |
+
print("\n### setPrompt() entered. ragFlag: ",ragFlag)
|
408 |
+
if ragFlag:
|
409 |
+
ragPrompt = setRagPrompt(pprompt)
|
410 |
+
userPrompt = pprompt + "\n" + ragPrompt
|
411 |
+
prompt = userPrompt
|
412 |
+
else:
|
413 |
+
userPrompt = pprompt
|
414 |
+
prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]"""
|
415 |
+
return prompt
|
416 |
+
|
417 |
+
def runModel(prompt):
|
418 |
+
output = llm.create_completion(
|
419 |
+
prompt, # Prompt
|
420 |
+
max_tokens=4096, # Generate up to 32 tokens
|
421 |
+
#stop = ["Q:", "\n"], # Stop generating just before the model would generate a new question
|
422 |
+
echo = False # Echo the prompt back in the output
|
423 |
+
)
|
424 |
+
responseTextArea.value = output["choices"][0]["text"]
|
425 |
+
|
426 |
+
def on_submitButton_clicked(b):
|
427 |
+
with output_widget:
|
428 |
+
clear_output(wait=True)
|
429 |
+
ragPromptTextArea.value = ""
|
430 |
+
responseTextArea.value = ""
|
431 |
+
log.debug(f"### selectRag: {selectRag.value}")
|
432 |
+
prompt = setPrompt(userTextArea.value,selectRag.value)
|
433 |
+
log.debug("### prompt: " + prompt)
|
434 |
+
runModel(prompt)
|
435 |
+
|
436 |
+
submitButton.on_click(on_submitButton_clicked)
|
437 |
+
display(output_widget)
|
438 |
+
|
439 |
+
|
440 |
+
logger.info("#### Closing client db connection.")
|
441 |
+
client.close()
|
442 |
+
|
443 |
+
logger.info("#### Program terminating.")
|
startup.sh
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /bin/bash
|
2 |
+
|
3 |
+
echo "#### startup.sh entered."
|
4 |
+
echo "### df -h"; df -h
|
5 |
+
#echo "### ls -l /app"; ls -l /app
|
6 |
+
#echo "### ls -l /app/weaviate"; ls -l /app/weaviate
|
7 |
+
#echo "### ls -l /app/text2vec-transformers"; ls -l /app/text2vec-transformers
|
8 |
+
#echo "### ls -l /data"; ls -l /data
|
9 |
+
|
10 |
+
mkdir -p /data/var/lib/weaviate
|
11 |
+
chmod -R 777 /data/var/lib/weaviate
|
12 |
+
echo "### ls -al /data/var/lib/weaviate"; ls -al /data/var/lib/weaviate
|
13 |
+
|
14 |
+
################################################
|
15 |
+
# Start tex2vec-transformers
|
16 |
+
echo "#### Before /app/text2vec-transformers"
|
17 |
+
/app/text2vec-transformers/bin/uvicorn app:app --host 0.0.0.0 --port 8081 --log-level info --timeout-keep-alive 1440 2>& 1 | tee /data/var/lib/weaviate/t2v.log &
|
18 |
+
|
19 |
+
#sleep 5
|
20 |
+
#echo "\n######## curl t2 "
|
21 |
+
#for (( ; ; )) do curl localhost:8081/vectors -H 'Content-Type: application/json' -d '{"text": "foo bar"}'; sleep 61; done &
|
22 |
+
|
23 |
+
|
24 |
+
###############################################
|
25 |
+
# Start the weaviate vector database server.
|
26 |
+
echo "#### Before /app/weaviate"
|
27 |
+
|
28 |
+
#echo "### pwd"; pwd
|
29 |
+
#echo "### ls -al ~"; ls -al ~
|
30 |
+
|
31 |
+
#echo "### ls -al ~"; ls -al ~
|
32 |
+
#ln -s ~/var/lib/weaviate /var/lib/weaviate
|
33 |
+
|
34 |
+
#echo "### ls -l /var/lib/weaviate"; ls -l /var/lib/weaviate
|
35 |
+
#echo "### ls -l /data"; ls -l /data
|
36 |
+
#echo "### ls -l /data/var/lib/weaviate"; ls -l /data/var/lib/weaviate
|
37 |
+
|
38 |
+
export AUTHENTICATION_ANONYMOUS_ACCESS_ENABLED=true \
|
39 |
+
PERSISTENCE_DATA_PATH=/data/var/lib/weaviate \
|
40 |
+
DEFAULT_VECTORIZER_MODULE=text2vec-transformers \
|
41 |
+
ENABLE_MODULES=text2vec-transformers \
|
42 |
+
TRANSFORMERS_INFERENCE_API=http://127.0.0.1:8081 \
|
43 |
+
LOG_LEVEL=info \
|
44 |
+
MODULES_CLIENT_TIMEOUT=600s
|
45 |
+
env
|
46 |
+
/app/weaviate/weaviate --host 127.0.0.1 --port 8080 --scheme http --write-timeout 600s 2>& 1 | tee /data/var/lib/weaviate/ws.log &
|
47 |
+
|
48 |
+
echo "#### Before sleep."
|
49 |
+
sleep 60
|
50 |
+
|
51 |
+
echo "#### Before /app/semsearch.py"
|
52 |
+
python /app/semsearch.py 2>& 1 | tee /data/var/lib/weaviate/ss.log &
|
53 |
+
|
54 |
+
# Display timestamps.
|
55 |
+
for (( ; ; )) do date; sleep 60; done &
|
56 |
+
|
57 |
+
sleep 10
|
58 |
+
echo "#############################"
|
59 |
+
df -h
|
60 |
+
ls -al /data/var/lib/weaviate
|
61 |
+
ls -al /data/var/lib/weaviate/*
|
62 |
+
|
63 |
+
wait
|
64 |
+
|
65 |
+
|