Spaces:
Sleeping
Sleeping
MVPilgrim
commited on
Commit
·
5f226ca
1
Parent(s):
c4f0f2d
debug
Browse files- app.py +13 -5
- app_Hld01.py +513 -0
app.py
CHANGED
|
@@ -329,7 +329,7 @@ try:
|
|
| 329 |
use_mlock=False,
|
| 330 |
kv_overrides=None,
|
| 331 |
seed=llama_cpp.LLAMA_DEFAULT_SEED,
|
| 332 |
-
n_ctx=
|
| 333 |
n_batch=512,
|
| 334 |
n_threads=8,
|
| 335 |
n_threads_batch=16,
|
|
@@ -350,13 +350,13 @@ try:
|
|
| 350 |
lora_scale=1.0,
|
| 351 |
lora_path=None,
|
| 352 |
numa=False,
|
| 353 |
-
chat_format=
|
| 354 |
chat_handler=None,
|
| 355 |
draft_model=None,
|
| 356 |
tokenizer=None,
|
| 357 |
type_k=None,
|
| 358 |
type_v=None,
|
| 359 |
-
verbose=
|
| 360 |
)
|
| 361 |
st.session_state.llm = llm
|
| 362 |
logger.info("### Initializing LLM exited.")
|
|
@@ -468,11 +468,19 @@ try:
|
|
| 468 |
userPrompt = pprompt + "\n" + ragPrompt
|
| 469 |
prompt = userPrompt
|
| 470 |
userPrompt = "Using this information: " + ragPrompt \
|
| 471 |
-
+ "process the following statement or question and produce a response" \
|
| 472 |
+ pprompt
|
| 473 |
else:
|
| 474 |
-
userPrompt = st.session_state.sysTA + " " + pprompt
|
|
|
|
| 475 |
#prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 476 |
logger.info("setPrompt exited.")
|
| 477 |
logger.info(f"### userPrompt: {userPrompt}")
|
| 478 |
return userPrompt
|
|
|
|
| 329 |
use_mlock=False,
|
| 330 |
kv_overrides=None,
|
| 331 |
seed=llama_cpp.LLAMA_DEFAULT_SEED,
|
| 332 |
+
n_ctx=2048,
|
| 333 |
n_batch=512,
|
| 334 |
n_threads=8,
|
| 335 |
n_threads_batch=16,
|
|
|
|
| 350 |
lora_scale=1.0,
|
| 351 |
lora_path=None,
|
| 352 |
numa=False,
|
| 353 |
+
chat_format="llama-2",
|
| 354 |
chat_handler=None,
|
| 355 |
draft_model=None,
|
| 356 |
tokenizer=None,
|
| 357 |
type_k=None,
|
| 358 |
type_v=None,
|
| 359 |
+
verbose=False
|
| 360 |
)
|
| 361 |
st.session_state.llm = llm
|
| 362 |
logger.info("### Initializing LLM exited.")
|
|
|
|
| 468 |
userPrompt = pprompt + "\n" + ragPrompt
|
| 469 |
prompt = userPrompt
|
| 470 |
userPrompt = "Using this information: " + ragPrompt \
|
| 471 |
+
+ "process the following statement or question and produce a response. " \
|
| 472 |
+ pprompt
|
| 473 |
else:
|
| 474 |
+
#userPrompt = st.session_state.sysTA + " " + pprompt
|
| 475 |
+
userPrompt = pprompt
|
| 476 |
#prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]"""
|
| 477 |
+
messages = [
|
| 478 |
+
{"role": "system", "content": st.session_state.sysTA},
|
| 479 |
+
{
|
| 480 |
+
"role": "user",
|
| 481 |
+
"content": userPrompt
|
| 482 |
+
}
|
| 483 |
+
]
|
| 484 |
logger.info("setPrompt exited.")
|
| 485 |
logger.info(f"### userPrompt: {userPrompt}")
|
| 486 |
return userPrompt
|
app_Hld01.py
ADDED
|
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import weaviate
|
| 2 |
+
from weaviate.connect import ConnectionParams
|
| 3 |
+
from weaviate.classes.init import AdditionalConfig, Timeout
|
| 4 |
+
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from langchain_community.document_loaders import BSHTMLLoader
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from lxml import html
|
| 9 |
+
import logging
|
| 10 |
+
from semantic_text_splitter import HuggingFaceTextSplitter
|
| 11 |
+
from tokenizers import Tokenizer
|
| 12 |
+
import json
|
| 13 |
+
import os
|
| 14 |
+
import re
|
| 15 |
+
|
| 16 |
+
import llama_cpp
|
| 17 |
+
from llama_cpp import Llama
|
| 18 |
+
|
| 19 |
+
import streamlit as st
|
| 20 |
+
import subprocess
|
| 21 |
+
import time
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
if 'logging' not in st.session_state:
|
| 26 |
+
weaviate_logger = logging.getLogger("httpx")
|
| 27 |
+
weaviate_logger.setLevel(logging.WARNING)
|
| 28 |
+
logger = logging.getLogger(__name__)
|
| 29 |
+
logging.basicConfig(level=logging.INFO)
|
| 30 |
+
st.session_state.weaviate_logger = weaviate_logger
|
| 31 |
+
st.session_state.logger = logger
|
| 32 |
+
else:
|
| 33 |
+
weaviate_logger = st.session_state.weaviate_logger
|
| 34 |
+
logger = st.session_state.logger
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def runStartup():
|
| 38 |
+
logger.info("### Running startup.sh")
|
| 39 |
+
try:
|
| 40 |
+
#result = subprocess.run("/app/startup.sh",shell=False,capture_output=None,
|
| 41 |
+
# text=None,timeout=300)
|
| 42 |
+
#logger.info(f"startup.sh stdout: {result.stdout}")
|
| 43 |
+
#logger.info(f"startup.sh stderr: {result.stderr}")
|
| 44 |
+
#logger.info(f"Return code: {result.returncode}")
|
| 45 |
+
subprocess.Popen(["/app/startup.sh"])
|
| 46 |
+
time.sleep(180)
|
| 47 |
+
except Exception as e:
|
| 48 |
+
emsg = str(e)
|
| 49 |
+
logger.ERROR(f"subprocess.run EXCEPTION. e: {emsg}")
|
| 50 |
+
try:
|
| 51 |
+
with open("/app/startup.log", "r") as file:
|
| 52 |
+
content = file.read()
|
| 53 |
+
print(content)
|
| 54 |
+
except Exception as e2:
|
| 55 |
+
emsg = str(e2)
|
| 56 |
+
logger.ERROR(f"#### Displaying startup.log EXCEPTION. e2: {emsg}")
|
| 57 |
+
logger.info("### Running startup.sh complete")
|
| 58 |
+
if 'runStartup' not in st.session_state:
|
| 59 |
+
st.session_state.runStartup = True
|
| 60 |
+
runStartup()
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
######################################################################
|
| 65 |
+
# MAINLINE
|
| 66 |
+
#
|
| 67 |
+
logger.info("#### MAINLINE ENTERED.")
|
| 68 |
+
|
| 69 |
+
# Function to load the CSS file
|
| 70 |
+
def load_css(file_name):
|
| 71 |
+
logger.info("#### load_css entered.")
|
| 72 |
+
with open(file_name) as f:
|
| 73 |
+
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
| 74 |
+
logger.info("#### load_css exited.")
|
| 75 |
+
|
| 76 |
+
# Load the custom CSS
|
| 77 |
+
if 'load_css' not in st.session_state:
|
| 78 |
+
load_css(".streamlit/main.css")
|
| 79 |
+
st.session_state.load_css = True
|
| 80 |
+
|
| 81 |
+
st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", \
|
| 82 |
+
unsafe_allow_html=True)
|
| 83 |
+
st.markdown("<h6 style='text-align: center; color: #666666;'>V1</h6>", unsafe_allow_html=True)
|
| 84 |
+
|
| 85 |
+
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
|
| 86 |
+
pathString = "/app/inputDocs"
|
| 87 |
+
chunks = []
|
| 88 |
+
webpageDocNames = []
|
| 89 |
+
page_contentArray = []
|
| 90 |
+
webpageChunks = []
|
| 91 |
+
webpageTitles = []
|
| 92 |
+
webpageChunksDocNames = []
|
| 93 |
+
|
| 94 |
+
######################################################
|
| 95 |
+
# Connect to the Weaviate vector database.
|
| 96 |
+
#if 'client' not in st.session_state:
|
| 97 |
+
if 'client' not in st.session_state:
|
| 98 |
+
logger.info("#### Create Weaviate db client connection.")
|
| 99 |
+
client = weaviate.WeaviateClient(
|
| 100 |
+
connection_params=ConnectionParams.from_params(
|
| 101 |
+
http_host="localhost",
|
| 102 |
+
http_port="8080",
|
| 103 |
+
http_secure=False,
|
| 104 |
+
grpc_host="localhost",
|
| 105 |
+
grpc_port="50051",
|
| 106 |
+
grpc_secure=False
|
| 107 |
+
),
|
| 108 |
+
additional_config=AdditionalConfig(
|
| 109 |
+
timeout=Timeout(init=60, query=1800, insert=1800), # Values in seconds
|
| 110 |
+
)
|
| 111 |
+
)
|
| 112 |
+
client.connect()
|
| 113 |
+
st.session_state.client = client
|
| 114 |
+
logger.info("#### Create Weaviate db client connection exited.")
|
| 115 |
+
else:
|
| 116 |
+
client = st.session_state.client
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
#######################################################
|
| 120 |
+
# Read each text input file, parse it into a document,
|
| 121 |
+
# chunk it, collect chunks and document name.
|
| 122 |
+
if not client.collections.exists("Documents") or not client.collections.exists("Chunks") :
|
| 123 |
+
logger.info("#### Read and chunk input text files.")
|
| 124 |
+
for filename in os.listdir(pathString):
|
| 125 |
+
logger.debug(filename)
|
| 126 |
+
path = Path(pathString + "/" + filename)
|
| 127 |
+
filename = filename.rstrip(".html")
|
| 128 |
+
webpageDocNames.append(filename)
|
| 129 |
+
htmlLoader = BSHTMLLoader(path,"utf-8")
|
| 130 |
+
htmlData = htmlLoader.load()
|
| 131 |
+
|
| 132 |
+
title = htmlData[0].metadata['title']
|
| 133 |
+
page_content = htmlData[0].page_content
|
| 134 |
+
|
| 135 |
+
# Clean data. Remove multiple newlines, etc.
|
| 136 |
+
page_content = re.sub(r'\n+', '\n',page_content)
|
| 137 |
+
|
| 138 |
+
page_contentArray.append(page_content)
|
| 139 |
+
webpageTitles.append(title)
|
| 140 |
+
max_tokens = 1000
|
| 141 |
+
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
|
| 142 |
+
logger.debug(f"### tokenizer: {tokenizer}")
|
| 143 |
+
splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
|
| 144 |
+
chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)
|
| 145 |
+
|
| 146 |
+
chunks = []
|
| 147 |
+
for chnk in chunksOnePage:
|
| 148 |
+
logger.debug(f"#### chnk in file: {chnk}")
|
| 149 |
+
chunks.append(chnk)
|
| 150 |
+
logger.debug(f"chunks: {chunks}")
|
| 151 |
+
webpageChunks.append(chunks)
|
| 152 |
+
webpageChunksDocNames.append(filename + "Chunks")
|
| 153 |
+
|
| 154 |
+
logger.debug(f"### filename, title: {filename}, {title}")
|
| 155 |
+
logger.debug(f"### webpageDocNames: {webpageDocNames}")
|
| 156 |
+
logger.info("#### Read and chunk input text files exited.")
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
######################################################
|
| 161 |
+
# Create database webpage and chunks collections.
|
| 162 |
+
#wpCollection = createWebpageCollection()
|
| 163 |
+
#wpChunksCollection = createChunksCollection()
|
| 164 |
+
if not client.collections.exists("Documents"):
|
| 165 |
+
logger.info("#### createWebpageCollection() entered.")
|
| 166 |
+
#client.collections.delete("Documents")
|
| 167 |
+
class_obj = {
|
| 168 |
+
"class": "Documents",
|
| 169 |
+
"description": "For first attempt at loading a Weviate database.",
|
| 170 |
+
"vectorizer": "text2vec-transformers",
|
| 171 |
+
"moduleConfig": {
|
| 172 |
+
"text2vec-transformers": {
|
| 173 |
+
"vectorizeClassName": False
|
| 174 |
+
}
|
| 175 |
+
},
|
| 176 |
+
"vectorIndexType": "hnsw",
|
| 177 |
+
"vectorIndexConfig": {
|
| 178 |
+
"distance": "cosine",
|
| 179 |
+
},
|
| 180 |
+
"properties": [
|
| 181 |
+
{
|
| 182 |
+
"name": "title",
|
| 183 |
+
"dataType": ["text"],
|
| 184 |
+
"description": "HTML doc title.",
|
| 185 |
+
"vectorizer": "text2vec-transformers",
|
| 186 |
+
"moduleConfig": {
|
| 187 |
+
"text2vec-transformers": {
|
| 188 |
+
"vectorizePropertyName": True,
|
| 189 |
+
"skip": False,
|
| 190 |
+
"tokenization": "lowercase"
|
| 191 |
+
}
|
| 192 |
+
},
|
| 193 |
+
"invertedIndexConfig": {
|
| 194 |
+
"bm25": {
|
| 195 |
+
"b": 0.75,
|
| 196 |
+
"k1": 1.2
|
| 197 |
+
},
|
| 198 |
+
}
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"name": "content",
|
| 202 |
+
"dataType": ["text"],
|
| 203 |
+
"description": "HTML page content.",
|
| 204 |
+
"moduleConfig": {
|
| 205 |
+
"text2vec-transformers": {
|
| 206 |
+
"vectorizePropertyName": True,
|
| 207 |
+
"tokenization": "whitespace"
|
| 208 |
+
}
|
| 209 |
+
}
|
| 210 |
+
}
|
| 211 |
+
]
|
| 212 |
+
}
|
| 213 |
+
wpCollection = client.collections.create_from_dict(class_obj)
|
| 214 |
+
st.session_state.wpCollection = wpCollection
|
| 215 |
+
logger.info("#### createWebpageCollection() exited.")
|
| 216 |
+
else:
|
| 217 |
+
wpCollection = client.collections.get("Documents")
|
| 218 |
+
st.session_state.wpCollection = wpCollection
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
if not client.collections.exists("Chunks"):
|
| 222 |
+
logger.info("#### createChunksCollection() entered.")
|
| 223 |
+
#client.collections.delete("Chunks")
|
| 224 |
+
class_obj = {
|
| 225 |
+
"class": "Chunks",
|
| 226 |
+
"description": "Collection for document chunks.",
|
| 227 |
+
"vectorizer": "text2vec-transformers",
|
| 228 |
+
"moduleConfig": {
|
| 229 |
+
"text2vec-transformers": {
|
| 230 |
+
"vectorizeClassName": True
|
| 231 |
+
}
|
| 232 |
+
},
|
| 233 |
+
"vectorIndexType": "hnsw",
|
| 234 |
+
"vectorIndexConfig": {
|
| 235 |
+
"distance": "cosine"
|
| 236 |
+
},
|
| 237 |
+
"properties": [
|
| 238 |
+
{
|
| 239 |
+
"name": "chunk",
|
| 240 |
+
"dataType": ["text"],
|
| 241 |
+
"description": "Single webpage chunk.",
|
| 242 |
+
"vectorizer": "text2vec-transformers",
|
| 243 |
+
"moduleConfig": {
|
| 244 |
+
"text2vec-transformers": {
|
| 245 |
+
"vectorizePropertyName": False,
|
| 246 |
+
"skip": False,
|
| 247 |
+
"tokenization": "lowercase"
|
| 248 |
+
}
|
| 249 |
+
}
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"name": "chunk_index",
|
| 253 |
+
"dataType": ["int"]
|
| 254 |
+
},
|
| 255 |
+
{
|
| 256 |
+
"name": "webpage",
|
| 257 |
+
"dataType": ["Documents"],
|
| 258 |
+
"description": "Webpage content chunks.",
|
| 259 |
+
|
| 260 |
+
"invertedIndexConfig": {
|
| 261 |
+
"bm25": {
|
| 262 |
+
"b": 0.75,
|
| 263 |
+
"k1": 1.2
|
| 264 |
+
}
|
| 265 |
+
}
|
| 266 |
+
}
|
| 267 |
+
]
|
| 268 |
+
}
|
| 269 |
+
wpChunksCollection = client.collections.create_from_dict(class_obj)
|
| 270 |
+
st.session_state.wpChunksCollection = wpChunksCollection
|
| 271 |
+
logger.info("#### createChunksCollection() exited.")
|
| 272 |
+
else:
|
| 273 |
+
wpChunksCollection = client.collections.get("Chunks")
|
| 274 |
+
st.session_state.wpChunksCollection = wpChunksCollection
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
###########################################################
|
| 280 |
+
# Create document and chunks objects in the database.
|
| 281 |
+
if not client.collections.exists("Documents") :
|
| 282 |
+
logger.info("#### Create page/doc db objects.")
|
| 283 |
+
for i, className in enumerate(webpageDocNames):
|
| 284 |
+
title = webpageTitles[i]
|
| 285 |
+
logger.debug(f"## className, title: {className}, {title}")
|
| 286 |
+
# Create Webpage Object
|
| 287 |
+
page_content = page_contentArray[i]
|
| 288 |
+
# Insert the document.
|
| 289 |
+
wpCollectionObj_uuid = wpCollection.data.insert(
|
| 290 |
+
{
|
| 291 |
+
"name": className,
|
| 292 |
+
"title": title,
|
| 293 |
+
"content": page_content
|
| 294 |
+
}
|
| 295 |
+
)
|
| 296 |
+
logger.info("#### Create page/doc/db/objects exited.")
|
| 297 |
+
|
| 298 |
+
if not client.collections.exists("Chunks") :
|
| 299 |
+
logger.info("#### Create chunk db objects.")
|
| 300 |
+
# Insert the chunks for the document.
|
| 301 |
+
for i2, chunk in enumerate(webpageChunks):
|
| 302 |
+
chunk_uuid = wpChunksCollection.data.insert(
|
| 303 |
+
{
|
| 304 |
+
"title": title,
|
| 305 |
+
"chunk": chunk,
|
| 306 |
+
"chunk_index": i2,
|
| 307 |
+
"references":
|
| 308 |
+
{
|
| 309 |
+
"webpage": wpCollectionObj_uuid
|
| 310 |
+
}
|
| 311 |
+
}
|
| 312 |
+
)
|
| 313 |
+
logger.info("#### Create chunk db objects exited.")
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
#################################################################
|
| 317 |
+
# Initialize the LLM.
|
| 318 |
+
model_path = "/app/llama-2-7b-chat.Q4_0.gguf"
|
| 319 |
+
if 'llm' not in st.session_state:
|
| 320 |
+
logger.info("### Initializing LLM.")
|
| 321 |
+
llm = Llama(model_path,
|
| 322 |
+
#*,
|
| 323 |
+
n_gpu_layers=0,
|
| 324 |
+
split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER,
|
| 325 |
+
main_gpu=0,
|
| 326 |
+
tensor_split=None,
|
| 327 |
+
vocab_only=False,
|
| 328 |
+
use_mmap=True,
|
| 329 |
+
use_mlock=False,
|
| 330 |
+
kv_overrides=None,
|
| 331 |
+
seed=llama_cpp.LLAMA_DEFAULT_SEED,
|
| 332 |
+
n_ctx=512,
|
| 333 |
+
n_batch=512,
|
| 334 |
+
n_threads=8,
|
| 335 |
+
n_threads_batch=16,
|
| 336 |
+
rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
| 337 |
+
pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
|
| 338 |
+
rope_freq_base=0.0,
|
| 339 |
+
rope_freq_scale=0.0,
|
| 340 |
+
yarn_ext_factor=-1.0,
|
| 341 |
+
yarn_attn_factor=1.0,
|
| 342 |
+
yarn_beta_fast=32.0,
|
| 343 |
+
yarn_beta_slow=1.0,
|
| 344 |
+
yarn_orig_ctx=0,
|
| 345 |
+
logits_all=False,
|
| 346 |
+
embedding=False,
|
| 347 |
+
offload_kqv=True,
|
| 348 |
+
last_n_tokens_size=64,
|
| 349 |
+
lora_base=None,
|
| 350 |
+
lora_scale=1.0,
|
| 351 |
+
lora_path=None,
|
| 352 |
+
numa=False,
|
| 353 |
+
chat_format=None,
|
| 354 |
+
chat_handler=None,
|
| 355 |
+
draft_model=None,
|
| 356 |
+
tokenizer=None,
|
| 357 |
+
type_k=None,
|
| 358 |
+
type_v=None,
|
| 359 |
+
verbose=True
|
| 360 |
+
)
|
| 361 |
+
st.session_state.llm = llm
|
| 362 |
+
logger.info("### Initializing LLM exited.")
|
| 363 |
+
else:
|
| 364 |
+
llm = st.session_state.llm
|
| 365 |
+
|
| 366 |
+
def getRagData(promptText):
|
| 367 |
+
logger.info("#### getRagData() entered.")
|
| 368 |
+
###############################################################################
|
| 369 |
+
# Initial the the sentence transformer and encode the query prompt.
|
| 370 |
+
logger.debug(f"#### Encode text query prompt to create vectors. {promptText}")
|
| 371 |
+
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
|
| 372 |
+
|
| 373 |
+
vector = model.encode(promptText)
|
| 374 |
+
vectorList = []
|
| 375 |
+
|
| 376 |
+
logger.debug("#### Print vectors.")
|
| 377 |
+
for vec in vector:
|
| 378 |
+
vectorList.append(vec)
|
| 379 |
+
logger.debug(f"vectorList: {vectorList[2]}")
|
| 380 |
+
|
| 381 |
+
# Fetch chunks and print chunks.
|
| 382 |
+
logger.debug("#### Retrieve semchunks from db using vectors from prompt.")
|
| 383 |
+
wpChunksCollection = st.session_state.wpChunksCollection
|
| 384 |
+
semChunks = wpChunksCollection.query.near_vector(
|
| 385 |
+
near_vector=vectorList,
|
| 386 |
+
distance=0.7,
|
| 387 |
+
limit=3
|
| 388 |
+
)
|
| 389 |
+
logger.debug(f"### semChunks[0]: {semChunks}")
|
| 390 |
+
|
| 391 |
+
# Print chunks, corresponding document and document title.
|
| 392 |
+
ragData = ""
|
| 393 |
+
logger.debug("#### Print individual retrieved chunks.")
|
| 394 |
+
wpCollection = st.session_state.wpCollection
|
| 395 |
+
for chunk in enumerate(semChunks.objects):
|
| 396 |
+
logger.info(f"#### chunk: {chunk}")
|
| 397 |
+
ragData = ragData + "\n" + chunk[0]
|
| 398 |
+
webpage_uuid = chunk[1].properties['references']['webpage']
|
| 399 |
+
logger.info(f"webpage_uuid: {webpage_uuid}")
|
| 400 |
+
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
|
| 401 |
+
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
|
| 402 |
+
#collection = client.collections.get("Chunks")
|
| 403 |
+
logger.info("#### getRagData() exited.")
|
| 404 |
+
return ragData
|
| 405 |
+
|
| 406 |
+
|
| 407 |
+
# Display UI
|
| 408 |
+
col1, col2 = st.columns(2)
|
| 409 |
+
|
| 410 |
+
with col1:
|
| 411 |
+
if "sysTA" not in st.session_state:
|
| 412 |
+
st.session_state.sysTA = st.text_area(label="sysTA",value="fdsaf fsdafdsa")
|
| 413 |
+
elif "sysTAtext" in st.session_state:
|
| 414 |
+
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTAtext)
|
| 415 |
+
else:
|
| 416 |
+
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTA)
|
| 417 |
+
|
| 418 |
+
if "userpTA" not in st.session_state:
|
| 419 |
+
st.session_state.userpTA = st.text_area(label="userpTA",value="fdsaf fsdafdsa")
|
| 420 |
+
elif "userpTAtext" in st.session_state:
|
| 421 |
+
st.session_state.userpTA = st.text_area (label="userpTA",value=st.session_state.userpTAtext)
|
| 422 |
+
else:
|
| 423 |
+
st.session_state.userpTA = st.text_area(label="userpTA",value=st.session_state.userpTA)
|
| 424 |
+
|
| 425 |
+
with col2:
|
| 426 |
+
if "ragpTA" not in st.session_state:
|
| 427 |
+
st.session_state.ragpTA = st.text_area(label="ragpTA",value="fdsaf fsdafdsa")
|
| 428 |
+
elif "ragpTAtext" in st.session_state:
|
| 429 |
+
st.session_state.ragpTA = st.text_area(label="ragpTA",value=st.session_state.ragpTAtext)
|
| 430 |
+
else:
|
| 431 |
+
st.session_state.ragpTA = st.text_area(label="ragpTA",value=st.session_state.ragpTA)
|
| 432 |
+
|
| 433 |
+
if "rspTA" not in st.session_state:
|
| 434 |
+
st.session_state.rspTA = st.text_area(label="rspTA",value="fdsaf fsdafdsa")
|
| 435 |
+
elif "rspTAtext" in st.session_state:
|
| 436 |
+
st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTAtext)
|
| 437 |
+
else:
|
| 438 |
+
st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTA)
|
| 439 |
+
|
| 440 |
+
def runLLM(prompt):
|
| 441 |
+
logger = st.session_state.logger
|
| 442 |
+
logger.info("### runLLM entered.")
|
| 443 |
+
|
| 444 |
+
max_tokens = 1000
|
| 445 |
+
temperature = 0.3
|
| 446 |
+
top_p = 0.1
|
| 447 |
+
echoVal = True
|
| 448 |
+
stop = ["Q", "\n"]
|
| 449 |
+
|
| 450 |
+
modelOutput = llm(
|
| 451 |
+
prompt,
|
| 452 |
+
max_tokens=max_tokens,
|
| 453 |
+
temperature=temperature,
|
| 454 |
+
top_p=top_p,
|
| 455 |
+
echo=echoVal,
|
| 456 |
+
stop=stop,
|
| 457 |
+
)
|
| 458 |
+
result = modelOutput["choices"][0]["text"].strip()
|
| 459 |
+
logger.info(f"### llmResult: {result}")
|
| 460 |
+
logger.info("### runLLM exited.")
|
| 461 |
+
return result
|
| 462 |
+
|
| 463 |
+
def setPrompt(pprompt,ragFlag):
|
| 464 |
+
logger = st.session_state.logger
|
| 465 |
+
logger.info(f"\n### setPrompt() entered. ragFlag: {ragFlag}")
|
| 466 |
+
if ragFlag:
|
| 467 |
+
ragPrompt = getRagData(pprompt)
|
| 468 |
+
userPrompt = pprompt + "\n" + ragPrompt
|
| 469 |
+
prompt = userPrompt
|
| 470 |
+
userPrompt = "Using this information: " + ragPrompt \
|
| 471 |
+
+ "process the following statement or question and produce a response. " \
|
| 472 |
+
+ pprompt
|
| 473 |
+
else:
|
| 474 |
+
userPrompt = st.session_state.sysTA + " " + pprompt
|
| 475 |
+
#prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]"""
|
| 476 |
+
logger.info("setPrompt exited.")
|
| 477 |
+
logger.info(f"### userPrompt: {userPrompt}")
|
| 478 |
+
return userPrompt
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
def on_submitButton_clicked():
|
| 482 |
+
logger = st.session_state.logger
|
| 483 |
+
logger.info("### on_submitButton_clicked entered.")
|
| 484 |
+
st.session_state.sysTAtext = st.session_state.sysTA
|
| 485 |
+
logger.info(f"sysTAtext: {st.session_state.sysTAtext}")
|
| 486 |
+
|
| 487 |
+
#st.session_state.userpTAtext = st.session_state.userpTA
|
| 488 |
+
st.session_state.userpTAtext = setPrompt(st.session_state.userpTA,st.selectRag)
|
| 489 |
+
st.session_state.userpTA = st.session_state.userpTAtext
|
| 490 |
+
logger.info(f"userpTAtext: {st.session_state.userpTAtext}")
|
| 491 |
+
|
| 492 |
+
st.session_state.rspTAtext = runLLM(st.session_state.userpTAtext)
|
| 493 |
+
st.session_state.rspTA = st.session_state.rspTAtext
|
| 494 |
+
logger.info(f"rspTAtext: {st.session_state.rspTAtext}")
|
| 495 |
+
|
| 496 |
+
logger.info("### on_submitButton_clicked exited.")
|
| 497 |
+
|
| 498 |
+
|
| 499 |
+
with st.sidebar:
|
| 500 |
+
st.selectRag = st.checkbox("Enable Query With RAG",value=False,key="selectRag",help=None,on_change=None,args=None,kwargs=None,disabled=False,label_visibility="visible")
|
| 501 |
+
st.submitButton = st.button("Run LLM Query",key=None,help=None,on_click=on_submitButton_clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False)
|
| 502 |
+
|
| 503 |
+
logger.info("#### semsearch.py end of code.")
|
| 504 |
+
except Exception as e:
|
| 505 |
+
try:
|
| 506 |
+
emsg = str(e)
|
| 507 |
+
logger.error(f"Program-wide EXCEPTION. e: {emsg}")
|
| 508 |
+
with open("/app/startup.log", "r") as file:
|
| 509 |
+
content = file.read()
|
| 510 |
+
logger.debug(content)
|
| 511 |
+
except Exception as e2:
|
| 512 |
+
emsg = str(e2)
|
| 513 |
+
logger.error(f"#### Displaying startup.log EXCEPTION. e2: {emsg}")
|