Spaces:
Running
Running
debug
Browse files
app.py
CHANGED
@@ -21,437 +21,442 @@ import streamlit as st
|
|
21 |
import subprocess
|
22 |
|
23 |
|
24 |
-
|
25 |
-
if 'logging' not in st.session_state:
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
else:
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
def runStartup():
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
if 'runStartup' not in st.session_state:
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
######################################################################
|
55 |
-
# MAINLINE
|
56 |
-
#
|
57 |
-
logger.info("#### MAINLINE ENTERED.")
|
58 |
-
|
59 |
-
# Function to load the CSS file
|
60 |
-
def load_css(file_name):
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
# Load the custom CSS
|
65 |
-
if 'load_css' not in st.session_state:
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", unsafe_allow_html=True)
|
70 |
-
st.markdown("<h6 style='text-align: center; color: #666666;'>V1</h6>", unsafe_allow_html=True)
|
71 |
-
|
72 |
-
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
|
73 |
-
pathString = "/app/inputDocs"
|
74 |
-
chunks = []
|
75 |
-
webpageDocNames = []
|
76 |
-
page_contentArray = []
|
77 |
-
webpageChunks = []
|
78 |
-
webpageTitles = []
|
79 |
-
webpageChunksDocNames = []
|
80 |
-
|
81 |
-
######################################################
|
82 |
-
# Connect to the Weaviate vector database.
|
83 |
-
#if 'client' not in st.session_state:
|
84 |
-
logger.info("#### Create Weaviate db client connection.")
|
85 |
-
client = weaviate.WeaviateClient(
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
96 |
)
|
97 |
-
)
|
98 |
-
client
|
99 |
-
#
|
100 |
-
#
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
#
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
#
|
146 |
-
#
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
}
|
176 |
},
|
177 |
-
|
178 |
-
"
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
"dataType": ["text"],
|
187 |
-
"description": "HTML page content.",
|
188 |
-
"moduleConfig": {
|
189 |
-
"text2vec-transformers": {
|
190 |
-
"vectorizePropertyName": True,
|
191 |
-
"tokenization": "whitespace"
|
192 |
}
|
193 |
}
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
"vectorizeClassName": True
|
210 |
-
}
|
211 |
-
},
|
212 |
-
"vectorIndexType": "hnsw",
|
213 |
-
"vectorIndexConfig": {
|
214 |
-
"distance": "cosine",
|
215 |
-
},
|
216 |
-
"properties": [
|
217 |
-
{
|
218 |
-
"name": "chunk",
|
219 |
-
"dataType": ["text"],
|
220 |
-
"description": "Single webpage chunk.",
|
221 |
-
"vectorizer": "text2vec-transformers",
|
222 |
-
"moduleConfig": {
|
223 |
-
"text2vec-transformers": {
|
224 |
-
"vectorizePropertyName": False,
|
225 |
-
"skip": False,
|
226 |
-
"tokenization": "lowercase"
|
227 |
-
}
|
228 |
}
|
229 |
},
|
230 |
-
|
231 |
-
|
232 |
-
"
|
233 |
},
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
"
|
241 |
-
"
|
242 |
-
|
|
|
|
|
|
|
243 |
}
|
244 |
-
}
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
)
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
"
|
276 |
-
|
277 |
-
"
|
278 |
-
|
279 |
-
{
|
280 |
-
|
281 |
-
|
282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
283 |
)
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
if
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
rope_freq_base=0.0,
|
308 |
-
rope_freq_scale=0.0,
|
309 |
-
yarn_ext_factor=-1.0,
|
310 |
-
yarn_attn_factor=1.0,
|
311 |
-
yarn_beta_fast=32.0,
|
312 |
-
yarn_beta_slow=1.0,
|
313 |
-
yarn_orig_ctx=0,
|
314 |
-
logits_all=False,
|
315 |
-
embedding=False,
|
316 |
-
offload_kqv=True,
|
317 |
-
last_n_tokens_size=64,
|
318 |
-
lora_base=None,
|
319 |
-
lora_scale=1.0,
|
320 |
-
lora_path=None,
|
321 |
-
numa=False,
|
322 |
-
chat_format=None,
|
323 |
-
chat_handler=None,
|
324 |
-
draft_model=None,
|
325 |
-
tokenizer=None,
|
326 |
-
type_k=None,
|
327 |
-
type_v=None,
|
328 |
-
verbose=True
|
329 |
-
)
|
330 |
-
st.session_state.llm = llm
|
331 |
-
else:
|
332 |
-
llm = st.session_state.llm
|
333 |
-
|
334 |
-
def getRagData(promptText):
|
335 |
-
logger.info("#### getRagData() entered.")
|
336 |
-
###############################################################################
|
337 |
-
# Initial the the sentence transformer and encode the query prompt.
|
338 |
-
logger.info(f"#### Encode text query prompt to create vectors. {text}")
|
339 |
-
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
|
340 |
-
|
341 |
-
vector = model.encode(promptText)
|
342 |
-
vectorList = []
|
343 |
-
|
344 |
-
logger.debug("#### Print vectors.")
|
345 |
-
for vec in vector:
|
346 |
-
vectorList.append(vec)
|
347 |
-
logger.debug(f"vectorList: {vectorList[2]}")
|
348 |
-
|
349 |
-
# Fetch chunks and print chunks.
|
350 |
-
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
|
351 |
-
semChunks = wpChunkCollection.query.near_vector(
|
352 |
-
near_vector=vectorList,
|
353 |
-
distance=0.7,
|
354 |
-
limit=3
|
355 |
-
)
|
356 |
-
logger.debug(f"### semChunks[0]: {semChunks}")
|
357 |
-
|
358 |
-
# Print chunks, corresponding document and document title.
|
359 |
-
ragData = ""
|
360 |
-
logger.info("#### Print individual retrieved chunks.")
|
361 |
-
for chunk in enumerate(semChunks.objects):
|
362 |
-
logger.info(f"#### chunk: {chunk}")
|
363 |
-
ragData = ragData + "\n" + chunk[0]
|
364 |
-
webpage_uuid = chunk[1].properties['references']['webpage']
|
365 |
-
logger.info(f"webpage_uuid: {webpage_uuid}")
|
366 |
-
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
|
367 |
-
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
|
368 |
-
#collection = client.collections.get("Chunks")
|
369 |
-
return ragData
|
370 |
-
|
371 |
-
|
372 |
-
# Display UI
|
373 |
-
col1, col2 = st.columns(2)
|
374 |
-
|
375 |
-
with col1:
|
376 |
-
if "sysTA" not in st.session_state:
|
377 |
-
st.session_state.sysTA = st.text_area(label="sysTA",value="fdsaf fsdafdsa")
|
378 |
-
elif "sysTAtext" in st.session_state:
|
379 |
-
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTAtext)
|
380 |
-
else:
|
381 |
-
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTA)
|
382 |
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
st.session_state.
|
|
|
389 |
|
390 |
-
with col2:
|
391 |
-
if "ragpTA" not in st.session_state:
|
392 |
-
ragPromptTextArea = st.text_area(label="ragpTA",value="fdsaf fsdafdsa")
|
393 |
-
elif "ragpTAtext" in st.session_state:
|
394 |
-
st.session_state.ragpTA = st.text_area(label="ragpTA",value=st.session_state.ragpTAtext)
|
395 |
-
else:
|
396 |
-
st.session_state.ragTA = st.text_area(label="ragTA",value=st.session_state.ragTA)
|
397 |
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
top_p = 0.1
|
409 |
-
echo = True
|
410 |
-
stop = ["Q", "\n"]
|
411 |
-
|
412 |
-
modelOutput = llm(
|
413 |
-
prompt,
|
414 |
-
max_tokens=max_tokens,
|
415 |
-
temperature=temperature,
|
416 |
-
top_p=top_p,
|
417 |
-
echo=echo,
|
418 |
-
stop=stop,
|
419 |
-
)
|
420 |
-
result = modelOutput["choices"][0]["text"].strip()
|
421 |
-
return(result)
|
422 |
-
|
423 |
-
def setPrompt(pprompt,ragFlag):
|
424 |
-
logger(f"\n### setPrompt() entered. ragFlag: {ragFlag}")
|
425 |
-
if ragFlag:
|
426 |
-
ragPrompt = getRagData(pprompt)
|
427 |
-
userPrompt = pprompt + "\n" + ragPrompt
|
428 |
-
prompt = userPrompt
|
429 |
-
userPrompt = "Using this information: " + ragPrompt \
|
430 |
-
+ "process the following statement or question and produce a a response" \
|
431 |
-
+ intialPrompt
|
432 |
-
else:
|
433 |
-
userPrompt = pprompt
|
434 |
-
#prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]"""
|
435 |
-
return userPrompt
|
436 |
-
|
437 |
-
|
438 |
-
def on_submitButton_clicked():
|
439 |
-
logger = st.session_state.logger
|
440 |
-
logger.debug("\n### on_submitButton_clicked")
|
441 |
-
st.session_state.sysTAtext = st.session_state.sysTA
|
442 |
-
logger.info(f"sysTAtext: {st.session_state.sysTAtext}")
|
443 |
-
|
444 |
-
st.session_state.userpTAtext = setPrompt("","")
|
445 |
-
st.session_state.userpTA = st.session_state.userpTAtext
|
446 |
-
logger.info(f"userpTAtext: {st.session_state.userpTAtext}")
|
447 |
-
|
448 |
-
st.session_state.rspTAtext = runLLM(st.session_state.userpTAtext)
|
449 |
-
st.session_state.rspTA = st.session_state.rspTAtext
|
450 |
-
logger.info(f"rspTAtext: {st.session_state.rspTAtext}")
|
451 |
-
|
452 |
-
|
453 |
-
with st.sidebar:
|
454 |
-
st.selectRag = st.checkbox("Enable Query With RAG",value=False,key="selectRag",help=None,on_change=None,args=None,kwargs=None,disabled=False,label_visibility="visible")
|
455 |
-
st.submitButton = st.button("Run LLM Query",key=None,help=None,on_click=on_submitButton_clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False)
|
456 |
-
|
457 |
-
logger.info("#### semsearch.py terminating.")
|
|
|
21 |
import subprocess
|
22 |
|
23 |
|
24 |
+
try:
|
25 |
+
if 'logging' not in st.session_state:
|
26 |
+
weaviate_logger = logging.getLogger("httpx")
|
27 |
+
weaviate_logger.setLevel(logging.WARNING)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
logging.basicConfig(level=logging.INFO)
|
30 |
+
st.session_state.weaviate_logger = weaviate_logger
|
31 |
+
st.session_state.logger = logger
|
32 |
+
else:
|
33 |
+
weaviate_logger = st.session_state.weaviate_logger
|
34 |
+
logger = st.session_state.logger
|
35 |
+
|
36 |
+
|
37 |
+
def runStartup():
|
38 |
+
logger.info("### Running startup.sh")
|
39 |
+
result = ""
|
40 |
+
try:
|
41 |
+
result = subprocess.run("bash startup.sh 2>1 > /app/startup.log &",shell=True,capture_output=True,text=True,timeout=120)
|
42 |
+
logger.info(f"startup.sh stdout: {result.stdout}")
|
43 |
+
logger.info(f"startup.sh stderr: {result.stderr}")
|
44 |
+
logger.info(f"Return code: {result.returncode}")
|
45 |
+
except:
|
46 |
+
logger.error(f"subprocess.run() encountered error.")
|
47 |
+
logger.info("### Running startup.sh complete")
|
48 |
+
if 'runStartup' not in st.session_state:
|
49 |
+
st.session_state.runStartup = True
|
50 |
+
runStartup()
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
######################################################################
|
55 |
+
# MAINLINE
|
56 |
+
#
|
57 |
+
logger.info("#### MAINLINE ENTERED.")
|
58 |
+
|
59 |
+
# Function to load the CSS file
|
60 |
+
def load_css(file_name):
|
61 |
+
with open(file_name) as f:
|
62 |
+
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
63 |
+
|
64 |
+
# Load the custom CSS
|
65 |
+
if 'load_css' not in st.session_state:
|
66 |
+
load_css(".streamlit/main.css")
|
67 |
+
st.session_state.load_css = True
|
68 |
+
|
69 |
+
st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", unsafe_allow_html=True)
|
70 |
+
st.markdown("<h6 style='text-align: center; color: #666666;'>V1</h6>", unsafe_allow_html=True)
|
71 |
+
|
72 |
+
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
|
73 |
+
pathString = "/app/inputDocs"
|
74 |
+
chunks = []
|
75 |
+
webpageDocNames = []
|
76 |
+
page_contentArray = []
|
77 |
+
webpageChunks = []
|
78 |
+
webpageTitles = []
|
79 |
+
webpageChunksDocNames = []
|
80 |
+
|
81 |
+
######################################################
|
82 |
+
# Connect to the Weaviate vector database.
|
83 |
+
#if 'client' not in st.session_state:
|
84 |
+
logger.info("#### Create Weaviate db client connection.")
|
85 |
+
client = weaviate.WeaviateClient(
|
86 |
+
connection_params=ConnectionParams.from_params(
|
87 |
+
http_host="localhost",
|
88 |
+
http_port="8080",
|
89 |
+
http_secure=False,
|
90 |
+
grpc_host="localhost",
|
91 |
+
grpc_port="50051",
|
92 |
+
grpc_secure=False
|
93 |
+
),
|
94 |
+
additional_config=AdditionalConfig(
|
95 |
+
timeout=Timeout(init=60, query=1800, insert=1800), # Values in seconds
|
96 |
+
)
|
97 |
)
|
98 |
+
client.connect()
|
99 |
+
# st.session_state.client = client
|
100 |
+
#else:
|
101 |
+
# client = st.session_state.client
|
102 |
+
|
103 |
+
|
104 |
+
#######################################################
|
105 |
+
# Read each text input file, parse it into a document,
|
106 |
+
# chunk it, collect chunks and document name.
|
107 |
+
if not client.collections.exists("Documents") or not client.collections.exists("Documents") :
|
108 |
+
logger.info("#### Read and chunk input text files.")
|
109 |
+
for filename in os.listdir(pathString):
|
110 |
+
logger.info(filename)
|
111 |
+
path = Path(pathString + "/" + filename)
|
112 |
+
filename = filename.rstrip(".html")
|
113 |
+
webpageDocNames.append(filename)
|
114 |
+
htmlLoader = BSHTMLLoader(path,"utf-8")
|
115 |
+
htmlData = htmlLoader.load()
|
116 |
+
|
117 |
+
title = htmlData[0].metadata['title']
|
118 |
+
page_content = htmlData[0].page_content
|
119 |
+
|
120 |
+
# Clean data. Remove multiple newlines, etc.
|
121 |
+
page_content = re.sub(r'\n+', '\n',page_content)
|
122 |
+
|
123 |
+
page_contentArray.append(page_content);
|
124 |
+
webpageTitles.append(title)
|
125 |
+
max_tokens = 1000
|
126 |
+
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
|
127 |
+
logger.debug(f"### tokenizer: {tokenizer}")
|
128 |
+
splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
|
129 |
+
chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)
|
130 |
+
|
131 |
+
chunks = []
|
132 |
+
for chnk in chunksOnePage:
|
133 |
+
logger.debug(f"#### chnk in file: {chnk}")
|
134 |
+
chunks.append(chnk)
|
135 |
+
logger.debug(f"chunks: {chunks}")
|
136 |
+
webpageChunks.append(chunks)
|
137 |
+
webpageChunksDocNames.append(filename + "Chunks")
|
138 |
+
|
139 |
+
logger.debug(f"### filename, title: {filename}, {title}")
|
140 |
+
logger.debug(f"### webpageDocNames: {webpageDocNames}")
|
141 |
+
|
142 |
+
|
143 |
+
|
144 |
+
######################################################
|
145 |
+
# Create database webpage and chunks collections.
|
146 |
+
#wpCollection = createWebpageCollection()
|
147 |
+
#wpChunkCollection = createChunksCollection()
|
148 |
+
if not client.collections.exists("Documents"):
|
149 |
+
logger.info("#### createWebpageCollection() entered.")
|
150 |
+
#client.collections.delete("Documents")
|
151 |
+
class_obj = {
|
152 |
+
"class": "Documents",
|
153 |
+
"description": "For first attempt at loading a Weviate database.",
|
154 |
+
"vectorizer": "text2vec-transformers",
|
155 |
+
"moduleConfig": {
|
156 |
+
"text2vec-transformers": {
|
157 |
+
"vectorizeClassName": False
|
158 |
+
}
|
159 |
+
},
|
160 |
+
"vectorIndexType": "hnsw",
|
161 |
+
"vectorIndexConfig": {
|
162 |
+
"distance": "cosine",
|
163 |
+
},
|
164 |
+
"properties": [
|
165 |
+
{
|
166 |
+
"name": "title",
|
167 |
+
"dataType": ["text"],
|
168 |
+
"description": "HTML doc title.",
|
169 |
+
"vectorizer": "text2vec-transformers",
|
170 |
+
"moduleConfig": {
|
171 |
+
"text2vec-transformers": {
|
172 |
+
"vectorizePropertyName": True,
|
173 |
+
"skip": False,
|
174 |
+
"tokenization": "lowercase"
|
175 |
+
}
|
176 |
+
},
|
177 |
+
"invertedIndexConfig": {
|
178 |
+
"bm25": {
|
179 |
+
"b": 0.75,
|
180 |
+
"k1": 1.2
|
181 |
+
},
|
182 |
}
|
183 |
},
|
184 |
+
{
|
185 |
+
"name": "content",
|
186 |
+
"dataType": ["text"],
|
187 |
+
"description": "HTML page content.",
|
188 |
+
"moduleConfig": {
|
189 |
+
"text2vec-transformers": {
|
190 |
+
"vectorizePropertyName": True,
|
191 |
+
"tokenization": "whitespace"
|
192 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
}
|
194 |
}
|
195 |
+
]
|
196 |
+
}
|
197 |
+
wpCollection = client.collections.create_from_dict(class_obj)
|
198 |
+
|
199 |
+
|
200 |
+
if not client.collections.exists("Chunks"):
|
201 |
+
logger.info("#### createChunksCollection() entered.")
|
202 |
+
#client.collections.delete("Chunks")
|
203 |
+
class_obj = {
|
204 |
+
"class": "Chunks",
|
205 |
+
"description": "Collection for document chunks.",
|
206 |
+
"vectorizer": "text2vec-transformers",
|
207 |
+
"moduleConfig": {
|
208 |
+
"text2vec-transformers": {
|
209 |
+
"vectorizeClassName": True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
}
|
211 |
},
|
212 |
+
"vectorIndexType": "hnsw",
|
213 |
+
"vectorIndexConfig": {
|
214 |
+
"distance": "cosine",
|
215 |
},
|
216 |
+
"properties": [
|
217 |
+
{
|
218 |
+
"name": "chunk",
|
219 |
+
"dataType": ["text"],
|
220 |
+
"description": "Single webpage chunk.",
|
221 |
+
"vectorizer": "text2vec-transformers",
|
222 |
+
"moduleConfig": {
|
223 |
+
"text2vec-transformers": {
|
224 |
+
"vectorizePropertyName": False,
|
225 |
+
"skip": False,
|
226 |
+
"tokenization": "lowercase"
|
227 |
+
}
|
228 |
}
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"name": "chunk_index",
|
232 |
+
"dataType": ["int"]
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"name": "webpage",
|
236 |
+
"dataType": ["Documents"],
|
237 |
+
"description": "Webpage content chunks.",
|
238 |
+
|
239 |
+
"invertedIndexConfig": {
|
240 |
+
"bm25": {
|
241 |
+
"b": 0.75,
|
242 |
+
"k1": 1.2
|
243 |
+
}
|
244 |
+
}
|
245 |
+
}
|
246 |
+
]
|
247 |
+
}
|
248 |
+
wpChunkCollection = client.collections.create_from_dict(class_obj)
|
249 |
+
|
250 |
+
|
251 |
+
###########################################################
|
252 |
+
# Create document and chunks objects in the database.
|
253 |
+
if not client.collections.exists("Documents") :
|
254 |
+
logger.info("#### Create page/doc db objects.")
|
255 |
+
for i, className in enumerate(webpageDocNames):
|
256 |
+
title = webpageTitles[i]
|
257 |
+
logger.debug(f"## className, title: {className}, {title}")
|
258 |
+
# Create Webpage Object
|
259 |
+
page_content = page_contentArray[i]
|
260 |
+
# Insert the document.
|
261 |
+
wpCollectionObj_uuid = wpCollection.data.insert(
|
262 |
+
{
|
263 |
+
"name": className,
|
264 |
+
"title": title,
|
265 |
+
"content": page_content
|
266 |
+
}
|
267 |
+
)
|
268 |
+
|
269 |
+
if not client.collections.exists("Chunks") :
|
270 |
+
logger.info("#### Create chunk db objects.")
|
271 |
+
# Insert the chunks for the document.
|
272 |
+
for i2, chunk in enumerate(webpageChunks[i]):
|
273 |
+
chunk_uuid = wpChunkCollection.data.insert(
|
274 |
+
{
|
275 |
+
"title": title,
|
276 |
+
"chunk": chunk,
|
277 |
+
"chunk_index": i2,
|
278 |
+
"references":
|
279 |
+
{
|
280 |
+
"webpage": wpCollectionObj_uuid
|
281 |
+
}
|
282 |
+
}
|
283 |
+
)
|
284 |
+
|
285 |
+
|
286 |
+
#################################################################
|
287 |
+
# Initialize the LLM.
|
288 |
+
model_path = "/app/llama-2-7b-chat.Q4_0.gguf"
|
289 |
+
if 'llm' not in st.session_state:
|
290 |
+
llm = Llama(model_path,
|
291 |
+
#*,
|
292 |
+
n_gpu_layers=0,
|
293 |
+
split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER,
|
294 |
+
main_gpu=0,
|
295 |
+
tensor_split=None,
|
296 |
+
vocab_only=False,
|
297 |
+
use_mmap=True,
|
298 |
+
use_mlock=False,
|
299 |
+
kv_overrides=None,
|
300 |
+
seed=llama_cpp.LLAMA_DEFAULT_SEED,
|
301 |
+
n_ctx=512,
|
302 |
+
n_batch=512,
|
303 |
+
n_threads=8,
|
304 |
+
n_threads_batch=16,
|
305 |
+
rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
306 |
+
pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
|
307 |
+
rope_freq_base=0.0,
|
308 |
+
rope_freq_scale=0.0,
|
309 |
+
yarn_ext_factor=-1.0,
|
310 |
+
yarn_attn_factor=1.0,
|
311 |
+
yarn_beta_fast=32.0,
|
312 |
+
yarn_beta_slow=1.0,
|
313 |
+
yarn_orig_ctx=0,
|
314 |
+
logits_all=False,
|
315 |
+
embedding=False,
|
316 |
+
offload_kqv=True,
|
317 |
+
last_n_tokens_size=64,
|
318 |
+
lora_base=None,
|
319 |
+
lora_scale=1.0,
|
320 |
+
lora_path=None,
|
321 |
+
numa=False,
|
322 |
+
chat_format=None,
|
323 |
+
chat_handler=None,
|
324 |
+
draft_model=None,
|
325 |
+
tokenizer=None,
|
326 |
+
type_k=None,
|
327 |
+
type_v=None,
|
328 |
+
verbose=True
|
329 |
+
)
|
330 |
+
st.session_state.llm = llm
|
331 |
+
else:
|
332 |
+
llm = st.session_state.llm
|
333 |
+
|
334 |
+
def getRagData(promptText):
|
335 |
+
logger.info("#### getRagData() entered.")
|
336 |
+
###############################################################################
|
337 |
+
# Initial the the sentence transformer and encode the query prompt.
|
338 |
+
logger.info(f"#### Encode text query prompt to create vectors. {text}")
|
339 |
+
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
|
340 |
+
|
341 |
+
vector = model.encode(promptText)
|
342 |
+
vectorList = []
|
343 |
+
|
344 |
+
logger.debug("#### Print vectors.")
|
345 |
+
for vec in vector:
|
346 |
+
vectorList.append(vec)
|
347 |
+
logger.debug(f"vectorList: {vectorList[2]}")
|
348 |
+
|
349 |
+
# Fetch chunks and print chunks.
|
350 |
+
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
|
351 |
+
semChunks = wpChunkCollection.query.near_vector(
|
352 |
+
near_vector=vectorList,
|
353 |
+
distance=0.7,
|
354 |
+
limit=3
|
355 |
)
|
356 |
+
logger.debug(f"### semChunks[0]: {semChunks}")
|
357 |
+
|
358 |
+
# Print chunks, corresponding document and document title.
|
359 |
+
ragData = ""
|
360 |
+
logger.info("#### Print individual retrieved chunks.")
|
361 |
+
for chunk in enumerate(semChunks.objects):
|
362 |
+
logger.info(f"#### chunk: {chunk}")
|
363 |
+
ragData = ragData + "\n" + chunk[0]
|
364 |
+
webpage_uuid = chunk[1].properties['references']['webpage']
|
365 |
+
logger.info(f"webpage_uuid: {webpage_uuid}")
|
366 |
+
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
|
367 |
+
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
|
368 |
+
#collection = client.collections.get("Chunks")
|
369 |
+
return ragData
|
370 |
+
|
371 |
+
|
372 |
+
# Display UI
|
373 |
+
col1, col2 = st.columns(2)
|
374 |
+
|
375 |
+
with col1:
|
376 |
+
if "sysTA" not in st.session_state:
|
377 |
+
st.session_state.sysTA = st.text_area(label="sysTA",value="fdsaf fsdafdsa")
|
378 |
+
elif "sysTAtext" in st.session_state:
|
379 |
+
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTAtext)
|
380 |
+
else:
|
381 |
+
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTA)
|
382 |
+
|
383 |
+
if "userpTA" not in st.session_state:
|
384 |
+
userTextArea = st.text_area(label="userpTA",value="fdsaf fsdafdsa")
|
385 |
+
elif "userpTAtext" in st.session_state:
|
386 |
+
st.session_state.userpTA = st.text_area(label="userpTA",value=st.session_state.userpTAtext)
|
387 |
+
else:
|
388 |
+
st.session_state.userpTA = st.text_area(label="userpTA",value=st.session_state.userpTA)
|
389 |
+
|
390 |
+
with col2:
|
391 |
+
if "ragpTA" not in st.session_state:
|
392 |
+
ragPromptTextArea = st.text_area(label="ragpTA",value="fdsaf fsdafdsa")
|
393 |
+
elif "ragpTAtext" in st.session_state:
|
394 |
+
st.session_state.ragpTA = st.text_area(label="ragpTA",value=st.session_state.ragpTAtext)
|
395 |
+
else:
|
396 |
+
st.session_state.ragTA = st.text_area(label="ragTA",value=st.session_state.ragTA)
|
397 |
+
|
398 |
+
if "rspTA" not in st.session_state:
|
399 |
+
responseTextArea = st.text_area(label="rspTA",value="fdsaf fsdafdsa")
|
400 |
+
elif "rspTAtext" in st.session_state:
|
401 |
+
st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTAtext)
|
402 |
+
else:
|
403 |
+
st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTA)
|
404 |
+
|
405 |
+
def runLLM(prompt):
|
406 |
+
max_tokens = 1000
|
407 |
+
temperature = 0.3
|
408 |
+
top_p = 0.1
|
409 |
+
echo = True
|
410 |
+
stop = ["Q", "\n"]
|
411 |
+
|
412 |
+
modelOutput = llm(
|
413 |
+
prompt,
|
414 |
+
max_tokens=max_tokens,
|
415 |
+
temperature=temperature,
|
416 |
+
top_p=top_p,
|
417 |
+
echo=echo,
|
418 |
+
stop=stop,
|
419 |
)
|
420 |
+
result = modelOutput["choices"][0]["text"].strip()
|
421 |
+
return(result)
|
422 |
+
|
423 |
+
def setPrompt(pprompt,ragFlag):
|
424 |
+
logger(f"\n### setPrompt() entered. ragFlag: {ragFlag}")
|
425 |
+
if ragFlag:
|
426 |
+
ragPrompt = getRagData(pprompt)
|
427 |
+
userPrompt = pprompt + "\n" + ragPrompt
|
428 |
+
prompt = userPrompt
|
429 |
+
userPrompt = "Using this information: " + ragPrompt \
|
430 |
+
+ "process the following statement or question and produce a a response" \
|
431 |
+
+ intialPrompt
|
432 |
+
else:
|
433 |
+
userPrompt = pprompt
|
434 |
+
#prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]"""
|
435 |
+
return userPrompt
|
436 |
+
|
437 |
+
|
438 |
+
def on_submitButton_clicked():
|
439 |
+
logger = st.session_state.logger
|
440 |
+
logger.debug("\n### on_submitButton_clicked")
|
441 |
+
st.session_state.sysTAtext = st.session_state.sysTA
|
442 |
+
logger.info(f"sysTAtext: {st.session_state.sysTAtext}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
+
st.session_state.userpTAtext = setPrompt("","")
|
445 |
+
st.session_state.userpTA = st.session_state.userpTAtext
|
446 |
+
logger.info(f"userpTAtext: {st.session_state.userpTAtext}")
|
447 |
+
|
448 |
+
st.session_state.rspTAtext = runLLM(st.session_state.userpTAtext)
|
449 |
+
st.session_state.rspTA = st.session_state.rspTAtext
|
450 |
+
logger.info(f"rspTAtext: {st.session_state.rspTAtext}")
|
451 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
452 |
|
453 |
+
with st.sidebar:
|
454 |
+
st.selectRag = st.checkbox("Enable Query With RAG",value=False,key="selectRag",help=None,on_change=None,args=None,kwargs=None,disabled=False,label_visibility="visible")
|
455 |
+
st.submitButton = st.button("Run LLM Query",key=None,help=None,on_click=on_submitButton_clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False)
|
456 |
+
|
457 |
+
logger.info("#### semsearch.py terminating.")
|
458 |
+
except Exception as e:
|
459 |
+
logger.error("#### EXCEPTION. e: {str(e)})
|
460 |
+
with open("/app/startup.log", "r") as file:
|
461 |
+
content = file.read()
|
462 |
+
print(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|