Spaces:
Running
Running
debug
Browse files- app.py +0 -426
- semsearch.py +10 -0
- startup.sh +2 -1
app.py
CHANGED
@@ -1,426 +0,0 @@
|
|
1 |
-
import weaviate
|
2 |
-
from weaviate.connect import ConnectionParams
|
3 |
-
from weaviate.classes.init import AdditionalConfig, Timeout
|
4 |
-
|
5 |
-
from sentence_transformers import SentenceTransformer
|
6 |
-
from langchain_community.document_loaders import BSHTMLLoader
|
7 |
-
from pathlib import Path
|
8 |
-
from lxml import html
|
9 |
-
import logging
|
10 |
-
from semantic_text_splitter import HuggingFaceTextSplitter
|
11 |
-
from tokenizers import Tokenizer
|
12 |
-
import json
|
13 |
-
import os
|
14 |
-
import re
|
15 |
-
import logging
|
16 |
-
|
17 |
-
import llama_cpp
|
18 |
-
from llama_cpp import Llama
|
19 |
-
|
20 |
-
import streamlit as st
|
21 |
-
|
22 |
-
|
23 |
-
st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", unsafe_allow_html=True)
|
24 |
-
st.markdown("<h6 style='text-align: center; color: #666666;'>V1</h6>", unsafe_allow_html=True)
|
25 |
-
|
26 |
-
|
27 |
-
weaviate_logger = logging.getLogger("httpx")
|
28 |
-
weaviate_logger.setLevel(logging.WARNING)
|
29 |
-
|
30 |
-
logger = logging.getLogger(__name__)
|
31 |
-
logging.basicConfig(level=logging.INFO)
|
32 |
-
|
33 |
-
# Function to load the CSS file
|
34 |
-
def load_css(file_name):
|
35 |
-
with open(file_name) as f:
|
36 |
-
st.markdown(f'<style>{f.read()}</style>', unsafe_allow_html=True)
|
37 |
-
|
38 |
-
# Load the custom CSS
|
39 |
-
load_css(".streamlit/main.css")
|
40 |
-
|
41 |
-
st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", unsafe_allow_html=True)
|
42 |
-
st.markdown("<h6 style='text-align: center; color: #666666;'>V1</h6>", unsafe_allow_html=True)
|
43 |
-
|
44 |
-
######################################################################
|
45 |
-
# MAINLINE
|
46 |
-
#
|
47 |
-
logger.info("#### MAINLINE ENTERED.")
|
48 |
-
|
49 |
-
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
|
50 |
-
pathString = "/app/inputDocs"
|
51 |
-
chunks = []
|
52 |
-
webpageDocNames = []
|
53 |
-
page_contentArray = []
|
54 |
-
webpageChunks = []
|
55 |
-
webpageTitles = []
|
56 |
-
webpageChunksDocNames = []
|
57 |
-
|
58 |
-
######################################################
|
59 |
-
# Connect to the Weaviate vector database.
|
60 |
-
logger.info("#### Create Weaviate db client connection.")
|
61 |
-
client = weaviate.WeaviateClient(
|
62 |
-
connection_params=ConnectionParams.from_params(
|
63 |
-
http_host="localhost",
|
64 |
-
http_port="8080",
|
65 |
-
http_secure=False,
|
66 |
-
grpc_host="localhost",
|
67 |
-
grpc_port="50051",
|
68 |
-
grpc_secure=False
|
69 |
-
),
|
70 |
-
additional_config=AdditionalConfig(
|
71 |
-
timeout=Timeout(init=60, query=1800, insert=1800), # Values in seconds
|
72 |
-
)
|
73 |
-
)
|
74 |
-
client.connect()
|
75 |
-
|
76 |
-
|
77 |
-
#######################################################
|
78 |
-
# Read each text input file, parse it into a document,
|
79 |
-
# chunk it, collect chunks and document name.
|
80 |
-
logger.info("#### Read and chunk input text files.")
|
81 |
-
if not client.collections.exists("Documents") or not client.collections.exists("Documents") :
|
82 |
-
for filename in os.listdir(pathString):
|
83 |
-
logger.info(filename)
|
84 |
-
path = Path(pathString + "/" + filename)
|
85 |
-
filename = filename.rstrip(".html")
|
86 |
-
webpageDocNames.append(filename)
|
87 |
-
htmlLoader = BSHTMLLoader(path,"utf-8")
|
88 |
-
htmlData = htmlLoader.load()
|
89 |
-
|
90 |
-
title = htmlData[0].metadata['title']
|
91 |
-
page_content = htmlData[0].page_content
|
92 |
-
|
93 |
-
# Clean data. Remove multiple newlines, etc.
|
94 |
-
page_content = re.sub(r'\n+', '\n',page_content)
|
95 |
-
|
96 |
-
page_contentArray.append(page_content);
|
97 |
-
webpageTitles.append(title)
|
98 |
-
max_tokens = 1000
|
99 |
-
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
|
100 |
-
logger.debug(f"### tokenizer: {tokenizer}")
|
101 |
-
splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
|
102 |
-
chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)
|
103 |
-
|
104 |
-
chunks = []
|
105 |
-
for chnk in chunksOnePage:
|
106 |
-
logger.debug(f"#### chnk in file: {chnk}")
|
107 |
-
chunks.append(chnk)
|
108 |
-
logger.debug(f"chunks: {chunks}")
|
109 |
-
webpageChunks.append(chunks)
|
110 |
-
webpageChunksDocNames.append(filename + "Chunks")
|
111 |
-
|
112 |
-
logger.debug(f"### filename, title: {filename}, {title}")
|
113 |
-
logger.debug(f"### webpageDocNames: {webpageDocNames}")
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
######################################################
|
118 |
-
# Create database webpage and chunks collections.
|
119 |
-
#wpCollection = createWebpageCollection()
|
120 |
-
#wpChunkCollection = createChunksCollection()
|
121 |
-
logger.info("#### createWebpageCollection() entered.")
|
122 |
-
if not client.collections.exists("Documents"):
|
123 |
-
#client.collections.delete("Documents")
|
124 |
-
class_obj = {
|
125 |
-
"class": "Documents",
|
126 |
-
"description": "For first attempt at loading a Weviate database.",
|
127 |
-
"vectorizer": "text2vec-transformers",
|
128 |
-
"moduleConfig": {
|
129 |
-
"text2vec-transformers": {
|
130 |
-
"vectorizeClassName": False
|
131 |
-
}
|
132 |
-
},
|
133 |
-
"vectorIndexType": "hnsw",
|
134 |
-
"vectorIndexConfig": {
|
135 |
-
"distance": "cosine",
|
136 |
-
},
|
137 |
-
"properties": [
|
138 |
-
{
|
139 |
-
"name": "title",
|
140 |
-
"dataType": ["text"],
|
141 |
-
"description": "HTML doc title.",
|
142 |
-
"vectorizer": "text2vec-transformers",
|
143 |
-
"moduleConfig": {
|
144 |
-
"text2vec-transformers": {
|
145 |
-
"vectorizePropertyName": True,
|
146 |
-
"skip": False,
|
147 |
-
"tokenization": "lowercase"
|
148 |
-
}
|
149 |
-
},
|
150 |
-
"invertedIndexConfig": {
|
151 |
-
"bm25": {
|
152 |
-
"b": 0.75,
|
153 |
-
"k1": 1.2
|
154 |
-
},
|
155 |
-
}
|
156 |
-
},
|
157 |
-
{
|
158 |
-
"name": "content",
|
159 |
-
"dataType": ["text"],
|
160 |
-
"description": "HTML page content.",
|
161 |
-
"moduleConfig": {
|
162 |
-
"text2vec-transformers": {
|
163 |
-
"vectorizePropertyName": True,
|
164 |
-
"tokenization": "whitespace"
|
165 |
-
}
|
166 |
-
}
|
167 |
-
}
|
168 |
-
]
|
169 |
-
}
|
170 |
-
wpCollection = client.collections.create_from_dict(class_obj)
|
171 |
-
|
172 |
-
logger.info("#### createChunksCollection() entered.")
|
173 |
-
if not client.collections.exists("Chunks"):
|
174 |
-
#client.collections.delete("Chunks")
|
175 |
-
class_obj = {
|
176 |
-
"class": "Chunks",
|
177 |
-
"description": "Collection for document chunks.",
|
178 |
-
"vectorizer": "text2vec-transformers",
|
179 |
-
"moduleConfig": {
|
180 |
-
"text2vec-transformers": {
|
181 |
-
"vectorizeClassName": True
|
182 |
-
}
|
183 |
-
},
|
184 |
-
"vectorIndexType": "hnsw",
|
185 |
-
"vectorIndexConfig": {
|
186 |
-
"distance": "cosine",
|
187 |
-
},
|
188 |
-
"properties": [
|
189 |
-
{
|
190 |
-
"name": "chunk",
|
191 |
-
"dataType": ["text"],
|
192 |
-
"description": "Single webpage chunk.",
|
193 |
-
"vectorizer": "text2vec-transformers",
|
194 |
-
"moduleConfig": {
|
195 |
-
"text2vec-transformers": {
|
196 |
-
"vectorizePropertyName": False,
|
197 |
-
"skip": False,
|
198 |
-
"tokenization": "lowercase"
|
199 |
-
}
|
200 |
-
}
|
201 |
-
},
|
202 |
-
{
|
203 |
-
"name": "chunk_index",
|
204 |
-
"dataType": ["int"]
|
205 |
-
},
|
206 |
-
{
|
207 |
-
"name": "webpage",
|
208 |
-
"dataType": ["Documents"],
|
209 |
-
"description": "Webpage content chunks.",
|
210 |
-
|
211 |
-
"invertedIndexConfig": {
|
212 |
-
"bm25": {
|
213 |
-
"b": 0.75,
|
214 |
-
"k1": 1.2
|
215 |
-
}
|
216 |
-
}
|
217 |
-
}
|
218 |
-
]
|
219 |
-
}
|
220 |
-
wpChunkCollection = client.collections.create_from_dict(class_obj)
|
221 |
-
|
222 |
-
|
223 |
-
###########################################################
|
224 |
-
# Create document and chunks objects in the database.
|
225 |
-
if not client.collections.exists("Documents") :
|
226 |
-
logger.info("#### Create page/doc db objects.")
|
227 |
-
for i, className in enumerate(webpageDocNames):
|
228 |
-
title = webpageTitles[i]
|
229 |
-
logger.debug(f"## className, title: {className}, {title}")
|
230 |
-
# Create Webpage Object
|
231 |
-
page_content = page_contentArray[i]
|
232 |
-
# Insert the document.
|
233 |
-
wpCollectionObj_uuid = wpCollection.data.insert(
|
234 |
-
{
|
235 |
-
"name": className,
|
236 |
-
"title": title,
|
237 |
-
"content": page_content
|
238 |
-
}
|
239 |
-
)
|
240 |
-
|
241 |
-
if not client.collections.exists("Chunks") :
|
242 |
-
logger.info("#### Create chunk db objects.")
|
243 |
-
# Insert the chunks for the document.
|
244 |
-
for i2, chunk in enumerate(webpageChunks[i]):
|
245 |
-
chunk_uuid = wpChunkCollection.data.insert(
|
246 |
-
{
|
247 |
-
"title": title,
|
248 |
-
"chunk": chunk,
|
249 |
-
"chunk_index": i2,
|
250 |
-
"references":
|
251 |
-
{
|
252 |
-
"webpage": wpCollectionObj_uuid
|
253 |
-
}
|
254 |
-
}
|
255 |
-
)
|
256 |
-
|
257 |
-
|
258 |
-
#################################################################
|
259 |
-
# Initialize the LLM.
|
260 |
-
model_path = "/app/llama-2-7b-chat.Q4_0.gguf"
|
261 |
-
llm = Llama(model_path,
|
262 |
-
#*,
|
263 |
-
n_gpu_layers=0,
|
264 |
-
split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER,
|
265 |
-
main_gpu=0,
|
266 |
-
tensor_split=None,
|
267 |
-
vocab_only=False,
|
268 |
-
use_mmap=True,
|
269 |
-
use_mlock=False,
|
270 |
-
kv_overrides=None,
|
271 |
-
seed=llama_cpp.LLAMA_DEFAULT_SEED,
|
272 |
-
n_ctx=512,
|
273 |
-
n_batch=512,
|
274 |
-
n_threads=8,
|
275 |
-
n_threads_batch=16,
|
276 |
-
rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
|
277 |
-
pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,
|
278 |
-
rope_freq_base=0.0,
|
279 |
-
rope_freq_scale=0.0,
|
280 |
-
yarn_ext_factor=-1.0,
|
281 |
-
yarn_attn_factor=1.0,
|
282 |
-
yarn_beta_fast=32.0,
|
283 |
-
yarn_beta_slow=1.0,
|
284 |
-
yarn_orig_ctx=0,
|
285 |
-
logits_all=False,
|
286 |
-
embedding=False,
|
287 |
-
offload_kqv=True,
|
288 |
-
last_n_tokens_size=64,
|
289 |
-
lora_base=None,
|
290 |
-
lora_scale=1.0,
|
291 |
-
lora_path=None,
|
292 |
-
numa=False,
|
293 |
-
chat_format=None,
|
294 |
-
chat_handler=None,
|
295 |
-
draft_model=None,
|
296 |
-
tokenizer=None,
|
297 |
-
type_k=None,
|
298 |
-
type_v=None,
|
299 |
-
verbose=True
|
300 |
-
)
|
301 |
-
|
302 |
-
|
303 |
-
def getRagData(promptText):
|
304 |
-
###############################################################################
|
305 |
-
# Initial the the sentence transformer and encode the query prompt.
|
306 |
-
logger.info(f"#### Encode text query prompt to create vectors. {text}")
|
307 |
-
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
|
308 |
-
|
309 |
-
vector = model.encode(promptText)
|
310 |
-
vectorList = []
|
311 |
-
|
312 |
-
logger.debug("#### Print vectors.")
|
313 |
-
for vec in vector:
|
314 |
-
vectorList.append(vec)
|
315 |
-
logger.debug(f"vectorList: {vectorList[2]}")
|
316 |
-
|
317 |
-
# Fetch chunks and print chunks.
|
318 |
-
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
|
319 |
-
semChunks = wpChunkCollection.query.near_vector(
|
320 |
-
near_vector=vectorList,
|
321 |
-
distance=0.7,
|
322 |
-
limit=3
|
323 |
-
)
|
324 |
-
logger.debug(f"### semChunks[0]: {semChunks}")
|
325 |
-
|
326 |
-
# Print chunks, corresponding document and document title.
|
327 |
-
ragData = ""
|
328 |
-
logger.info("#### Print individual retrieved chunks.")
|
329 |
-
for chunk in enumerate(semChunks.objects):
|
330 |
-
logger.info(f"#### chunk: {chunk}")
|
331 |
-
ragData = ragData + "\n" + chunk[0]
|
332 |
-
webpage_uuid = chunk[1].properties['references']['webpage']
|
333 |
-
logger.info(f"webpage_uuid: {webpage_uuid}")
|
334 |
-
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
|
335 |
-
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
|
336 |
-
#collection = client.collections.get("Chunks")
|
337 |
-
return ragData
|
338 |
-
|
339 |
-
|
340 |
-
# Display UI
|
341 |
-
col1, col2 = st.columns(2)
|
342 |
-
|
343 |
-
with col1:
|
344 |
-
if "sysTA" not in st.session_state:
|
345 |
-
st.session_state.sysTA = st.text_area(label="sysTA",value="fdsaf fsdafdsa")
|
346 |
-
elif "sysTAtext" in st.session_state:
|
347 |
-
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTAtext)
|
348 |
-
else:
|
349 |
-
st.session_state.sysTA = st.text_area(label="sysTA",value=st.session_state.sysTA)
|
350 |
-
|
351 |
-
if "userpTA" not in st.session_state:
|
352 |
-
userTextArea = st.text_area(label="userpTA",value="fdsaf fsdafdsa")
|
353 |
-
elif "userpTAtext" in st.session_state:
|
354 |
-
st.session_state.userpTA = st.text_area(label="userpTA",value=st.session_state.userpTAtext)
|
355 |
-
else:
|
356 |
-
st.session_state.userpTA = st.text_area(label="userpTA",value=st.session_state.userpTA)
|
357 |
-
|
358 |
-
with col2:
|
359 |
-
if "ragpTA" not in st.session_state:
|
360 |
-
ragPromptTextArea = st.text_area(label="ragpTA",value="fdsaf fsdafdsa")
|
361 |
-
elif "ragpTAtext" in st.session_state:
|
362 |
-
st.session_state.ragpTA = st.text_area(label="ragpTA",value=st.session_state.ragpTAtext)
|
363 |
-
else:
|
364 |
-
st.session_state.ragTA = st.text_area(label="ragTA",value=st.session_state.ragTA)
|
365 |
-
|
366 |
-
if "rspTA" not in st.session_state:
|
367 |
-
responseTextArea = st.text_area(label="rspTA",value="fdsaf fsdafdsa")
|
368 |
-
elif "rspTAtext" in st.session_state:
|
369 |
-
st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTAtext)
|
370 |
-
else:
|
371 |
-
st.session_state.rspTA = st.text_area(label="rspTA",value=st.session_state.rspTA)
|
372 |
-
|
373 |
-
def runLLM(prompt):
|
374 |
-
max_tokens = 1000
|
375 |
-
temperature = 0.3
|
376 |
-
top_p = 0.1
|
377 |
-
echo = True
|
378 |
-
stop = ["Q", "\n"]
|
379 |
-
|
380 |
-
modelOutput = llm(
|
381 |
-
prompt,
|
382 |
-
max_tokens=max_tokens,
|
383 |
-
temperature=temperature,
|
384 |
-
top_p=top_p,
|
385 |
-
echo=echo,
|
386 |
-
stop=stop,
|
387 |
-
)
|
388 |
-
result = modelOutput["choices"][0]["text"].strip()
|
389 |
-
return(result)
|
390 |
-
|
391 |
-
def setPrompt(pprompt,ragFlag):
|
392 |
-
print("\n### setPrompt() entered. ragFlag: ",ragFlag)
|
393 |
-
if ragFlag:
|
394 |
-
ragPrompt = getRagData(pprompt)
|
395 |
-
userPrompt = pprompt + "\n" + ragPrompt
|
396 |
-
prompt = userPrompt
|
397 |
-
userPrompt = "Using this information: " + ragPrompt \
|
398 |
-
+ "process the following statement or question and produce a a response" \
|
399 |
-
+ intialPrompt
|
400 |
-
else:
|
401 |
-
userPrompt = pprompt
|
402 |
-
#prompt = f""" <s> [INST] <<SYS>> {systemTextArea.value} </SYS>> Q: {userPrompt} A: [/INST]"""
|
403 |
-
return userPrompt
|
404 |
-
|
405 |
-
|
406 |
-
def on_submitButton_clicked(b):
|
407 |
-
logger.debug("\n### on_submitButton_clicked")
|
408 |
-
st.session_state.sysTAtext = st.session_state.sysTA
|
409 |
-
logger.info(f"sysTAtext: {st.session_state.sysTAtext}")
|
410 |
-
|
411 |
-
st.session_state.userpTAtext = setPrompt("","")
|
412 |
-
st.session_state.userpTA = st.session_state.userpTAtext
|
413 |
-
logger.info(f"userpTAtext: {st.session_state.userpTAtext}")
|
414 |
-
|
415 |
-
st.session_state.rspTAtext = runLLM(st.session_state.userpTAtext)
|
416 |
-
st.session_state.rspTA = st.session_state.rspTAtext
|
417 |
-
logger.info(f"rspTAtext: {st.session_state.rspTAtext}")
|
418 |
-
|
419 |
-
|
420 |
-
with st.sidebar:
|
421 |
-
st.selectRag = st.checkbox("Enable Query With RAG",value=False,key="selectRag",help=None,on_change=None,args=None,kwargs=None,disabled=False,label_visibility="visible")
|
422 |
-
st.submitButton = st.button("Run LLM Query",key=None,help=None,on_click=on_submitButton_clicked,args=None,kwargs=None,type="secondary",disabled=False,use_container_width=False)
|
423 |
-
|
424 |
-
#logger.info("#### Closing client db connection.")
|
425 |
-
#client.close()
|
426 |
-
#logger.info("#### Program terminating.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
semsearch.py
CHANGED
@@ -18,6 +18,7 @@ import llama_cpp
|
|
18 |
from llama_cpp import Llama
|
19 |
|
20 |
import streamlit as st
|
|
|
21 |
|
22 |
|
23 |
st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", unsafe_allow_html=True)
|
@@ -30,6 +31,15 @@ weaviate_logger.setLevel(logging.WARNING)
|
|
30 |
logger = logging.getLogger(__name__)
|
31 |
logging.basicConfig(level=logging.INFO)
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
# Function to load the CSS file
|
34 |
def load_css(file_name):
|
35 |
with open(file_name) as f:
|
|
|
18 |
from llama_cpp import Llama
|
19 |
|
20 |
import streamlit as st
|
21 |
+
import subprocess
|
22 |
|
23 |
|
24 |
st.markdown("<h1 style='text-align: center; color: #666666;'>Vector Database RAG Proof of Concept</h1>", unsafe_allow_html=True)
|
|
|
31 |
logger = logging.getLogger(__name__)
|
32 |
logging.basicConfig(level=logging.INFO)
|
33 |
|
34 |
+
|
35 |
+
def runStartup():
|
36 |
+
result = subprocess.run(["bash", "startup.sh"], capture_output=True, text=True)
|
37 |
+
#print("Output:", result.stdout)
|
38 |
+
#print("Error:", result.stderr)
|
39 |
+
logger(f"Return code: {result.returncode}")
|
40 |
+
logger("### Running startup.sh")
|
41 |
+
runStartup()
|
42 |
+
|
43 |
# Function to load the CSS file
|
44 |
def load_css(file_name):
|
45 |
with open(file_name) as f:
|
startup.sh
CHANGED
@@ -62,8 +62,9 @@ env
|
|
62 |
|
63 |
echo "#### Before sleep."
|
64 |
sleep 30
|
|
|
65 |
|
66 |
-
echo "#### Before /app/semsearch.py"
|
67 |
#python /app/semsearch.py & #2>& 1 | tee /data/var/lib/weaviate/ss.log &
|
68 |
#streamlit run /app/semsearch.py &
|
69 |
|
|
|
62 |
|
63 |
echo "#### Before sleep."
|
64 |
sleep 30
|
65 |
+
echo "#### startup.sh exiting."
|
66 |
|
67 |
+
#echo "#### Before /app/semsearch.py"
|
68 |
#python /app/semsearch.py & #2>& 1 | tee /data/var/lib/weaviate/ss.log &
|
69 |
#streamlit run /app/semsearch.py &
|
70 |
|