Spaces:
Sleeping
Sleeping
MVPilgrim
commited on
Commit
·
ec89ccb
1
Parent(s):
2aab62b
fdsa
Browse files- semsearch._Hld03py +402 -0
- semsearch.py +274 -402
semsearch._Hld03py
ADDED
|
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import weaviate
|
| 2 |
+
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
from langchain_community.document_loaders import BSHTMLLoader
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from lxml import html
|
| 7 |
+
import logging
|
| 8 |
+
from semantic_text_splitter import HuggingFaceTextSplitter
|
| 9 |
+
from tokenizers import Tokenizer
|
| 10 |
+
import json
|
| 11 |
+
import os
|
| 12 |
+
import re
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
import llama_cpp
|
| 16 |
+
from llama_cpp import Llama
|
| 17 |
+
import ipywidgets as widgets
|
| 18 |
+
import time
|
| 19 |
+
from IPython.display import display, clear_output
|
| 20 |
+
|
| 21 |
+
weaviate_logger = logging.getLogger("httpx")
|
| 22 |
+
weaviate_logger.setLevel(logging.WARNING)
|
| 23 |
+
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
logging.basicConfig(level=logging.INFO)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
#################################################################
|
| 30 |
+
# Connect to Weaviate vector database.
|
| 31 |
+
#################################################################
|
| 32 |
+
client = ""
|
| 33 |
+
def connectToWeaviateDB():
|
| 34 |
+
######################################################
|
| 35 |
+
# Connect to the Weaviate vector database.
|
| 36 |
+
logger.info("#### Create Weaviate db client connection.")
|
| 37 |
+
client = weaviate.connect_to_custom(
|
| 38 |
+
http_host="127.0.0.1",
|
| 39 |
+
http_port=8080,
|
| 40 |
+
http_secure=False,
|
| 41 |
+
grpc_host="127.0.0.1",
|
| 42 |
+
grpc_port=50051,
|
| 43 |
+
grpc_secure=False
|
| 44 |
+
)
|
| 45 |
+
client.connect()
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
#######################################################
|
| 49 |
+
# Read each text input file, parse it into a document,
|
| 50 |
+
# chunk it, collect chunks and document name.
|
| 51 |
+
#######################################################
|
| 52 |
+
webpageDocNames = []
|
| 53 |
+
page_contentArray = []
|
| 54 |
+
webpageTitles = []
|
| 55 |
+
webpageChunks = []
|
| 56 |
+
webpageChunksDocNames = []
|
| 57 |
+
|
| 58 |
+
def readParseChunkFiles():
|
| 59 |
+
logger.info("#### Read and chunk input text files.")
|
| 60 |
+
for filename in os.listdir(pathString):
|
| 61 |
+
logger.info(filename)
|
| 62 |
+
path = Path(pathString + "/" + filename)
|
| 63 |
+
filename = filename.rstrip(".html")
|
| 64 |
+
webpageDocNames.append(filename)
|
| 65 |
+
htmlLoader = BSHTMLLoader(path,"utf-8")
|
| 66 |
+
htmlData = htmlLoader.load()
|
| 67 |
+
|
| 68 |
+
title = htmlData[0].metadata['title']
|
| 69 |
+
page_content = htmlData[0].page_content
|
| 70 |
+
|
| 71 |
+
# Clean data. Remove multiple newlines, etc.
|
| 72 |
+
page_content = re.sub(r'\n+', '\n',page_content)
|
| 73 |
+
|
| 74 |
+
page_contentArray.append(page_content);
|
| 75 |
+
webpageTitles.append (title)
|
| 76 |
+
max_tokens = 1000
|
| 77 |
+
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
|
| 78 |
+
logger.debug(f"### tokenizer: {tokenizer}")
|
| 79 |
+
splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
|
| 80 |
+
chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)
|
| 81 |
+
|
| 82 |
+
chunks = []
|
| 83 |
+
for chnk in chunksOnePage:
|
| 84 |
+
logger.debug(f"#### chnk in file: {chnk}")
|
| 85 |
+
chunks.append(chnk)
|
| 86 |
+
logger.debug(f"chunks: {chunks}")
|
| 87 |
+
webpageChunks.append(chunks)
|
| 88 |
+
webpageChunksDocNames.append(filename + "Chunks")
|
| 89 |
+
|
| 90 |
+
logger.debug(f"### filename, title: {filename}, {title}")
|
| 91 |
+
|
| 92 |
+
logger.debug(f"### webpageDocNames: {webpageDocNames}")
|
| 93 |
+
|
| 94 |
+
#################################################################
|
| 95 |
+
# Create the chunks collection for the Weaviate database.
|
| 96 |
+
#################################################################
|
| 97 |
+
def createChunksCollection():
|
| 98 |
+
logger.info("#### createChunksCollection() entered.")
|
| 99 |
+
if client.collections.exists("Chunks"):
|
| 100 |
+
client.collections.delete("Chunks")
|
| 101 |
+
|
| 102 |
+
class_obj = {
|
| 103 |
+
"class": "Chunks",
|
| 104 |
+
"description": "Collection for document chunks.",
|
| 105 |
+
"vectorizer": "text2vec-transformers",
|
| 106 |
+
"moduleConfig": {
|
| 107 |
+
"text2vec-transformers": {
|
| 108 |
+
"vectorizeClassName": True
|
| 109 |
+
}
|
| 110 |
+
},
|
| 111 |
+
"vectorIndexType": "hnsw",
|
| 112 |
+
"vectorIndexConfig": {
|
| 113 |
+
"distance": "cosine",
|
| 114 |
+
},
|
| 115 |
+
"properties": [
|
| 116 |
+
{
|
| 117 |
+
"name": "chunk",
|
| 118 |
+
"dataType": ["text"],
|
| 119 |
+
"description": "Single webpage chunk.",
|
| 120 |
+
"vectorizer": "text2vec-transformers",
|
| 121 |
+
"moduleConfig": {
|
| 122 |
+
"text2vec-transformers": {
|
| 123 |
+
"vectorizePropertyName": False,
|
| 124 |
+
"skip": False,
|
| 125 |
+
"tokenization": "lowercase"
|
| 126 |
+
}
|
| 127 |
+
}
|
| 128 |
+
},
|
| 129 |
+
{
|
| 130 |
+
"name": "chunk_index",
|
| 131 |
+
"dataType": ["int"]
|
| 132 |
+
},
|
| 133 |
+
{
|
| 134 |
+
"name": "webpage",
|
| 135 |
+
"dataType": ["Documents"],
|
| 136 |
+
"description": "Webpage content chunks.",
|
| 137 |
+
|
| 138 |
+
"invertedIndexConfig": {
|
| 139 |
+
"bm25": {
|
| 140 |
+
"b": 0.75,
|
| 141 |
+
"k1": 1.2
|
| 142 |
+
}
|
| 143 |
+
}
|
| 144 |
+
}
|
| 145 |
+
]
|
| 146 |
+
}
|
| 147 |
+
return(client.collections.create_from_dict(class_obj))
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
#####################################################################
|
| 151 |
+
# Create the document collection for the Weaviate database.
|
| 152 |
+
#####################################################################
|
| 153 |
+
def createWebpageCollection():
|
| 154 |
+
logger.info("#### createWebpageCollection() entered.")
|
| 155 |
+
if client.collections.exists("Documents"):
|
| 156 |
+
client.collections.delete("Documents")
|
| 157 |
+
|
| 158 |
+
class_obj = {
|
| 159 |
+
"class": "Documents",
|
| 160 |
+
"description": "For first attempt at loading a Weviate database.",
|
| 161 |
+
"vectorizer": "text2vec-transformers",
|
| 162 |
+
"moduleConfig": {
|
| 163 |
+
"text2vec-transformers": {
|
| 164 |
+
"vectorizeClassName": False
|
| 165 |
+
}
|
| 166 |
+
},
|
| 167 |
+
"vectorIndexType": "hnsw",
|
| 168 |
+
"vectorIndexConfig": {
|
| 169 |
+
"distance": "cosine",
|
| 170 |
+
},
|
| 171 |
+
"properties": [
|
| 172 |
+
{
|
| 173 |
+
"name": "title",
|
| 174 |
+
"dataType": ["text"],
|
| 175 |
+
"description": "HTML doc title.",
|
| 176 |
+
"vectorizer": "text2vec-transformers",
|
| 177 |
+
"moduleConfig": {
|
| 178 |
+
"text2vec-transformers": {
|
| 179 |
+
"vectorizePropertyName": True,
|
| 180 |
+
"skip": False,
|
| 181 |
+
"tokenization": "lowercase"
|
| 182 |
+
}
|
| 183 |
+
},
|
| 184 |
+
"invertedIndexConfig": {
|
| 185 |
+
"bm25": {
|
| 186 |
+
"b": 0.75,
|
| 187 |
+
"k1": 1.2
|
| 188 |
+
},
|
| 189 |
+
}
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"name": "content",
|
| 193 |
+
"dataType": ["text"],
|
| 194 |
+
"description": "HTML page content.",
|
| 195 |
+
"moduleConfig": {
|
| 196 |
+
"text2vec-transformers": {
|
| 197 |
+
"vectorizePropertyName": True,
|
| 198 |
+
"tokenization": "whitespace"
|
| 199 |
+
}
|
| 200 |
+
}
|
| 201 |
+
}
|
| 202 |
+
]
|
| 203 |
+
}
|
| 204 |
+
return(client.collections.create_from_dict(class_obj))
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
#################################################################
|
| 208 |
+
# Create document and chunk objects in database.
|
| 209 |
+
#################################################################
|
| 210 |
+
def createDatabaseObjects():
|
| 211 |
+
logger.info("#### Create page/doc and chunk db objects.")
|
| 212 |
+
for i, className in enumerate(webpageDocNames):
|
| 213 |
+
title = webpageTitles[i]
|
| 214 |
+
logger.debug(f"## className, title: {className}, {title}")
|
| 215 |
+
# Create Webpage Object
|
| 216 |
+
page_content = page_contentArray[i]
|
| 217 |
+
# Insert the document.
|
| 218 |
+
wpCollectionObj_uuid = wpCollection.data.insert(
|
| 219 |
+
{
|
| 220 |
+
"name": className,
|
| 221 |
+
"title": title,
|
| 222 |
+
"content": page_content
|
| 223 |
+
}
|
| 224 |
+
)
|
| 225 |
+
|
| 226 |
+
# Insert the chunks for the document.
|
| 227 |
+
for i2, chunk in enumerate(webpageChunks[i]):
|
| 228 |
+
chunk_uuid = wpChunkCollection.data.insert(
|
| 229 |
+
{
|
| 230 |
+
"title": title,
|
| 231 |
+
"chunk": chunk,
|
| 232 |
+
"chunk_index": i2,
|
| 233 |
+
"references":
|
| 234 |
+
{
|
| 235 |
+
"webpage": wpCollectionObj_uuid
|
| 236 |
+
}
|
| 237 |
+
}
|
| 238 |
+
)
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
#################################################################
|
| 242 |
+
# Create display widgets.
|
| 243 |
+
#################################################################
|
| 244 |
+
output_widget = ""
|
| 245 |
+
systemTextArea = ""
|
| 246 |
+
userTextArea = ""
|
| 247 |
+
ragPromptTextArea = ""
|
| 248 |
+
responseTextArea = ""
|
| 249 |
+
selectRag = ""
|
| 250 |
+
submitButton = ""
|
| 251 |
+
def createWidgets():
|
| 252 |
+
output_widget = widgets.Output()
|
| 253 |
+
with output_widget:
|
| 254 |
+
print("### Create widgets entered.")
|
| 255 |
+
|
| 256 |
+
systemTextArea = widgets.Textarea(
|
| 257 |
+
value='',
|
| 258 |
+
placeholder='Enter System Prompt.',
|
| 259 |
+
description='Sys Prompt: ',
|
| 260 |
+
disabled=False,
|
| 261 |
+
layout=widgets.Layout(width='300px', height='80px')
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
userTextArea = widgets.Textarea(
|
| 265 |
+
value='',
|
| 266 |
+
placeholder='Enter User Prompt.',
|
| 267 |
+
description='User Prompt: ',
|
| 268 |
+
disabled=False,
|
| 269 |
+
layout=widgets.Layout(width='435px', height='110px')
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
ragPromptTextArea = widgets.Textarea(
|
| 273 |
+
value='',
|
| 274 |
+
placeholder='App generated prompt with RAG information.',
|
| 275 |
+
description='RAG Prompt: ',
|
| 276 |
+
disabled=False,
|
| 277 |
+
layout=widgets.Layout(width='580px', height='180px')
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
responseTextArea = widgets.Textarea(
|
| 281 |
+
value='',
|
| 282 |
+
placeholder='LLM generated response.',
|
| 283 |
+
description='LLM Resp: ',
|
| 284 |
+
disabled=False,
|
| 285 |
+
layout=widgets.Layout(width='780px', height='200px')
|
| 286 |
+
)
|
| 287 |
+
|
| 288 |
+
selectRag = widgets.Checkbox(
|
| 289 |
+
value=False,
|
| 290 |
+
description='Use RAG',
|
| 291 |
+
disabled=False
|
| 292 |
+
)
|
| 293 |
+
|
| 294 |
+
submitButton = widgets.Button(
|
| 295 |
+
description='Run Model.',
|
| 296 |
+
disabled=False,
|
| 297 |
+
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
| 298 |
+
tooltip='Click',
|
| 299 |
+
icon='check' # (FontAwesome names without the `fa-` prefix)
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
######################################################################
|
| 304 |
+
# MAINLINE
|
| 305 |
+
######################################################################
|
| 306 |
+
logger.info("#### MAINLINE ENTERED.")
|
| 307 |
+
|
| 308 |
+
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
|
| 309 |
+
pathString = "/app/inputDocs"
|
| 310 |
+
chunks = []
|
| 311 |
+
webpageDocNames = []
|
| 312 |
+
page_contentArray = []
|
| 313 |
+
webpageChunks = []
|
| 314 |
+
webpageTitles = []
|
| 315 |
+
webpageChunksDocNames = []
|
| 316 |
+
|
| 317 |
+
#connectToWeaviateDB()
|
| 318 |
+
logger.info("#### Create Weaviate db client connection.")
|
| 319 |
+
client = weaviate.connect_to_custom(
|
| 320 |
+
http_host="127.0.0.1",
|
| 321 |
+
http_port=8080,
|
| 322 |
+
http_secure=False,
|
| 323 |
+
grpc_host="127.0.0.1",
|
| 324 |
+
grpc_port=50051,
|
| 325 |
+
grpc_secure=False
|
| 326 |
+
)
|
| 327 |
+
client.connect()
|
| 328 |
+
|
| 329 |
+
readParseChunkFiles()
|
| 330 |
+
wpCollection = createWebpageCollection()
|
| 331 |
+
wpChunkCollection = createChunksCollection()
|
| 332 |
+
|
| 333 |
+
#createDatabaseObjects()
|
| 334 |
+
logger.info("#### Create page/doc and chunk db objects.")
|
| 335 |
+
for i, className in enumerate(webpageDocNames):
|
| 336 |
+
title = webpageTitles[i]
|
| 337 |
+
logger.debug(f"## className, title: {className}, {title}")
|
| 338 |
+
# Create Webpage Object
|
| 339 |
+
page_content = page_contentArray[i]
|
| 340 |
+
# Insert the document.
|
| 341 |
+
wpCollectionObj_uuid = wpCollection.data.insert(
|
| 342 |
+
{
|
| 343 |
+
"name": className,
|
| 344 |
+
"title": title,
|
| 345 |
+
"content": page_content
|
| 346 |
+
}
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
# Insert the chunks for the document.
|
| 350 |
+
for i2, chunk in enumerate(webpageChunks[i]):
|
| 351 |
+
chunk_uuid = wpChunkCollection.data.insert(
|
| 352 |
+
{
|
| 353 |
+
"title": title,
|
| 354 |
+
"chunk": chunk,
|
| 355 |
+
"chunk_index": i2,
|
| 356 |
+
"references":
|
| 357 |
+
{
|
| 358 |
+
"webpage": wpCollectionObj_uuid
|
| 359 |
+
}
|
| 360 |
+
}
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
###############################################################################
|
| 364 |
+
# text contains prompt for vector DB.
|
| 365 |
+
text = "human-made computer cognitive ability"
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
###############################################################################
|
| 369 |
+
# Initial the the sentence transformer and encode the query prompt.
|
| 370 |
+
logger.info(f"#### Encode text query prompt to create vectors. {text}")
|
| 371 |
+
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
|
| 372 |
+
|
| 373 |
+
vector = model.encode(text)
|
| 374 |
+
vectorList = []
|
| 375 |
+
|
| 376 |
+
logger.debug("#### Print vectors.")
|
| 377 |
+
for vec in vector:
|
| 378 |
+
vectorList.append(vec)
|
| 379 |
+
logger.debug(f"vectorList: {vectorList[2]}")
|
| 380 |
+
|
| 381 |
+
# Fetch chunks and print chunks.
|
| 382 |
+
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
|
| 383 |
+
semChunks = wpChunkCollection.query.near_vector(
|
| 384 |
+
near_vector=vectorList,
|
| 385 |
+
distance=0.7,
|
| 386 |
+
limit=3
|
| 387 |
+
)
|
| 388 |
+
logger.debug(f"### semChunks[0]: {semChunks}")
|
| 389 |
+
|
| 390 |
+
# Print chunks, corresponding document and document title.
|
| 391 |
+
logger.info("#### Print individual retrieved chunks.")
|
| 392 |
+
for chunk in enumerate(semChunks.objects):
|
| 393 |
+
logger.info(f"#### chunk: {chunk}")
|
| 394 |
+
webpage_uuid = chunk[1].properties['references']['webpage']
|
| 395 |
+
logger.info(f"webpage_uuid: {webpage_uuid}")
|
| 396 |
+
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
|
| 397 |
+
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
|
| 398 |
+
|
| 399 |
+
logger.info("#### Closing client db connection.")
|
| 400 |
+
client.close()
|
| 401 |
+
|
| 402 |
+
logger.info("#### Program terminating.")
|
semsearch.py
CHANGED
|
@@ -1,402 +1,274 @@
|
|
| 1 |
-
import weaviate
|
| 2 |
-
|
| 3 |
-
from sentence_transformers import SentenceTransformer
|
| 4 |
-
from langchain_community.document_loaders import BSHTMLLoader
|
| 5 |
-
from pathlib import Path
|
| 6 |
-
from lxml import html
|
| 7 |
-
import logging
|
| 8 |
-
from semantic_text_splitter import HuggingFaceTextSplitter
|
| 9 |
-
from tokenizers import Tokenizer
|
| 10 |
-
import json
|
| 11 |
-
import os
|
| 12 |
-
import re
|
| 13 |
-
import logging
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
"
|
| 119 |
-
"
|
| 120 |
-
"
|
| 121 |
-
"moduleConfig": {
|
| 122 |
-
"text2vec-transformers": {
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
description='RAG Prompt: ',
|
| 276 |
-
disabled=False,
|
| 277 |
-
layout=widgets.Layout(width='580px', height='180px')
|
| 278 |
-
)
|
| 279 |
-
|
| 280 |
-
responseTextArea = widgets.Textarea(
|
| 281 |
-
value='',
|
| 282 |
-
placeholder='LLM generated response.',
|
| 283 |
-
description='LLM Resp: ',
|
| 284 |
-
disabled=False,
|
| 285 |
-
layout=widgets.Layout(width='780px', height='200px')
|
| 286 |
-
)
|
| 287 |
-
|
| 288 |
-
selectRag = widgets.Checkbox(
|
| 289 |
-
value=False,
|
| 290 |
-
description='Use RAG',
|
| 291 |
-
disabled=False
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
submitButton = widgets.Button(
|
| 295 |
-
description='Run Model.',
|
| 296 |
-
disabled=False,
|
| 297 |
-
button_style='', # 'success', 'info', 'warning', 'danger' or ''
|
| 298 |
-
tooltip='Click',
|
| 299 |
-
icon='check' # (FontAwesome names without the `fa-` prefix)
|
| 300 |
-
)
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
######################################################################
|
| 304 |
-
# MAINLINE
|
| 305 |
-
######################################################################
|
| 306 |
-
logger.info("#### MAINLINE ENTERED.")
|
| 307 |
-
|
| 308 |
-
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
|
| 309 |
-
pathString = "/app/inputDocs"
|
| 310 |
-
chunks = []
|
| 311 |
-
webpageDocNames = []
|
| 312 |
-
page_contentArray = []
|
| 313 |
-
webpageChunks = []
|
| 314 |
-
webpageTitles = []
|
| 315 |
-
webpageChunksDocNames = []
|
| 316 |
-
|
| 317 |
-
#connectToWeaviateDB()
|
| 318 |
-
logger.info("#### Create Weaviate db client connection.")
|
| 319 |
-
client = weaviate.connect_to_custom(
|
| 320 |
-
http_host="127.0.0.1",
|
| 321 |
-
http_port=8080,
|
| 322 |
-
http_secure=False,
|
| 323 |
-
grpc_host="127.0.0.1",
|
| 324 |
-
grpc_port=50051,
|
| 325 |
-
grpc_secure=False
|
| 326 |
-
)
|
| 327 |
-
client.connect()
|
| 328 |
-
|
| 329 |
-
readParseChunkFiles()
|
| 330 |
-
wpCollection = createWebpageCollection()
|
| 331 |
-
wpChunkCollection = createChunksCollection()
|
| 332 |
-
|
| 333 |
-
#createDatabaseObjects()
|
| 334 |
-
logger.info("#### Create page/doc and chunk db objects.")
|
| 335 |
-
for i, className in enumerate(webpageDocNames):
|
| 336 |
-
title = webpageTitles[i]
|
| 337 |
-
logger.debug(f"## className, title: {className}, {title}")
|
| 338 |
-
# Create Webpage Object
|
| 339 |
-
page_content = page_contentArray[i]
|
| 340 |
-
# Insert the document.
|
| 341 |
-
wpCollectionObj_uuid = wpCollection.data.insert(
|
| 342 |
-
{
|
| 343 |
-
"name": className,
|
| 344 |
-
"title": title,
|
| 345 |
-
"content": page_content
|
| 346 |
-
}
|
| 347 |
-
)
|
| 348 |
-
|
| 349 |
-
# Insert the chunks for the document.
|
| 350 |
-
for i2, chunk in enumerate(webpageChunks[i]):
|
| 351 |
-
chunk_uuid = wpChunkCollection.data.insert(
|
| 352 |
-
{
|
| 353 |
-
"title": title,
|
| 354 |
-
"chunk": chunk,
|
| 355 |
-
"chunk_index": i2,
|
| 356 |
-
"references":
|
| 357 |
-
{
|
| 358 |
-
"webpage": wpCollectionObj_uuid
|
| 359 |
-
}
|
| 360 |
-
}
|
| 361 |
-
)
|
| 362 |
-
|
| 363 |
-
###############################################################################
|
| 364 |
-
# text contains prompt for vector DB.
|
| 365 |
-
text = "human-made computer cognitive ability"
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
###############################################################################
|
| 369 |
-
# Initial the the sentence transformer and encode the query prompt.
|
| 370 |
-
logger.info(f"#### Encode text query prompt to create vectors. {text}")
|
| 371 |
-
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
|
| 372 |
-
|
| 373 |
-
vector = model.encode(text)
|
| 374 |
-
vectorList = []
|
| 375 |
-
|
| 376 |
-
logger.debug("#### Print vectors.")
|
| 377 |
-
for vec in vector:
|
| 378 |
-
vectorList.append(vec)
|
| 379 |
-
logger.debug(f"vectorList: {vectorList[2]}")
|
| 380 |
-
|
| 381 |
-
# Fetch chunks and print chunks.
|
| 382 |
-
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
|
| 383 |
-
semChunks = wpChunkCollection.query.near_vector(
|
| 384 |
-
near_vector=vectorList,
|
| 385 |
-
distance=0.7,
|
| 386 |
-
limit=3
|
| 387 |
-
)
|
| 388 |
-
logger.debug(f"### semChunks[0]: {semChunks}")
|
| 389 |
-
|
| 390 |
-
# Print chunks, corresponding document and document title.
|
| 391 |
-
logger.info("#### Print individual retrieved chunks.")
|
| 392 |
-
for chunk in enumerate(semChunks.objects):
|
| 393 |
-
logger.info(f"#### chunk: {chunk}")
|
| 394 |
-
webpage_uuid = chunk[1].properties['references']['webpage']
|
| 395 |
-
logger.info(f"webpage_uuid: {webpage_uuid}")
|
| 396 |
-
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
|
| 397 |
-
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
|
| 398 |
-
|
| 399 |
-
logger.info("#### Closing client db connection.")
|
| 400 |
-
client.close()
|
| 401 |
-
|
| 402 |
-
logger.info("#### Program terminating.")
|
|
|
|
| 1 |
+
import weaviate
|
| 2 |
+
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
from langchain_community.document_loaders import BSHTMLLoader
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
from lxml import html
|
| 7 |
+
import logging
|
| 8 |
+
from semantic_text_splitter import HuggingFaceTextSplitter
|
| 9 |
+
from tokenizers import Tokenizer
|
| 10 |
+
import json
|
| 11 |
+
import os
|
| 12 |
+
import re
|
| 13 |
+
import logging
|
| 14 |
+
|
| 15 |
+
weaviate_logger = logging.getLogger("httpx")
|
| 16 |
+
weaviate_logger.setLevel(logging.WARNING)
|
| 17 |
+
|
| 18 |
+
logger = logging.getLogger(__name__)
|
| 19 |
+
logging.basicConfig(level=logging.INFO)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
#################################################################
|
| 23 |
+
# Create the chunks collection for the Weaviate database.
|
| 24 |
+
def createChunksCollection():
|
| 25 |
+
logger.info("#### createChunksCollection() entered.")
|
| 26 |
+
if client.collections.exists("Chunks"):
|
| 27 |
+
client.collections.delete("Chunks")
|
| 28 |
+
|
| 29 |
+
class_obj = {
|
| 30 |
+
"class": "Chunks",
|
| 31 |
+
"description": "Collection for document chunks.",
|
| 32 |
+
"vectorizer": "text2vec-transformers",
|
| 33 |
+
"moduleConfig": {
|
| 34 |
+
"text2vec-transformers": {
|
| 35 |
+
"vectorizeClassName": True
|
| 36 |
+
}
|
| 37 |
+
},
|
| 38 |
+
"vectorIndexType": "hnsw",
|
| 39 |
+
"vectorIndexConfig": {
|
| 40 |
+
"distance": "cosine",
|
| 41 |
+
},
|
| 42 |
+
"properties": [
|
| 43 |
+
{
|
| 44 |
+
"name": "chunk",
|
| 45 |
+
"dataType": ["text"],
|
| 46 |
+
"description": "Single webpage chunk.",
|
| 47 |
+
"vectorizer": "text2vec-transformers",
|
| 48 |
+
"moduleConfig": {
|
| 49 |
+
"text2vec-transformers": {
|
| 50 |
+
"vectorizePropertyName": False,
|
| 51 |
+
"skip": False,
|
| 52 |
+
"tokenization": "lowercase"
|
| 53 |
+
}
|
| 54 |
+
}
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"name": "chunk_index",
|
| 58 |
+
"dataType": ["int"]
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"name": "webpage",
|
| 62 |
+
"dataType": ["Documents"],
|
| 63 |
+
"description": "Webpage content chunks.",
|
| 64 |
+
|
| 65 |
+
"invertedIndexConfig": {
|
| 66 |
+
"bm25": {
|
| 67 |
+
"b": 0.75,
|
| 68 |
+
"k1": 1.2
|
| 69 |
+
}
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
]
|
| 73 |
+
}
|
| 74 |
+
return(client.collections.create_from_dict(class_obj))
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
#####################################################################
|
| 78 |
+
# Create the document collection for the Weaviate database.
|
| 79 |
+
def createWebpageCollection():
|
| 80 |
+
logger.info("#### createWebpageCollection() entered.")
|
| 81 |
+
if client.collections.exists("Documents"):
|
| 82 |
+
client.collections.delete("Documents")
|
| 83 |
+
|
| 84 |
+
class_obj = {
|
| 85 |
+
"class": "Documents",
|
| 86 |
+
"description": "For first attempt at loading a Weviate database.",
|
| 87 |
+
"vectorizer": "text2vec-transformers",
|
| 88 |
+
"moduleConfig": {
|
| 89 |
+
"text2vec-transformers": {
|
| 90 |
+
"vectorizeClassName": False
|
| 91 |
+
}
|
| 92 |
+
},
|
| 93 |
+
"vectorIndexType": "hnsw",
|
| 94 |
+
"vectorIndexConfig": {
|
| 95 |
+
"distance": "cosine",
|
| 96 |
+
},
|
| 97 |
+
"properties": [
|
| 98 |
+
{
|
| 99 |
+
"name": "title",
|
| 100 |
+
"dataType": ["text"],
|
| 101 |
+
"description": "HTML doc title.",
|
| 102 |
+
"vectorizer": "text2vec-transformers",
|
| 103 |
+
"moduleConfig": {
|
| 104 |
+
"text2vec-transformers": {
|
| 105 |
+
"vectorizePropertyName": True,
|
| 106 |
+
"skip": False,
|
| 107 |
+
"tokenization": "lowercase"
|
| 108 |
+
}
|
| 109 |
+
},
|
| 110 |
+
"invertedIndexConfig": {
|
| 111 |
+
"bm25": {
|
| 112 |
+
"b": 0.75,
|
| 113 |
+
"k1": 1.2
|
| 114 |
+
},
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"name": "content",
|
| 119 |
+
"dataType": ["text"],
|
| 120 |
+
"description": "HTML page content.",
|
| 121 |
+
"moduleConfig": {
|
| 122 |
+
"text2vec-transformers": {
|
| 123 |
+
"vectorizePropertyName": True,
|
| 124 |
+
"tokenization": "whitespace"
|
| 125 |
+
}
|
| 126 |
+
}
|
| 127 |
+
}
|
| 128 |
+
]
|
| 129 |
+
}
|
| 130 |
+
return(client.collections.create_from_dict(class_obj))
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
######################################################################
|
| 134 |
+
# MAINLINE
|
| 135 |
+
#
|
| 136 |
+
logger.info("#### MAINLINE ENTERED.")
|
| 137 |
+
|
| 138 |
+
#pathString = "/Users/660565/KPSAllInOne/ProgramFilesX86/WebCopy/DownloadedWebSites/LLMPOC_HTML"
|
| 139 |
+
pathString = "/app/inputDocs"
|
| 140 |
+
chunks = []
|
| 141 |
+
webpageDocNames = []
|
| 142 |
+
page_contentArray = []
|
| 143 |
+
webpageChunks = []
|
| 144 |
+
webpageTitles = []
|
| 145 |
+
webpageChunksDocNames = []
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
######################################################
|
| 149 |
+
# Connect to the Weaviate vector database.
|
| 150 |
+
logger.info("#### Create Weaviate db client connection.")
|
| 151 |
+
client = weaviate.connect_to_custom(
|
| 152 |
+
http_host="127.0.0.1",
|
| 153 |
+
http_port=8080,
|
| 154 |
+
http_secure=False,
|
| 155 |
+
grpc_host="127.0.0.1",
|
| 156 |
+
grpc_port=50051,
|
| 157 |
+
grpc_secure=False
|
| 158 |
+
)
|
| 159 |
+
client.connect()
|
| 160 |
+
|
| 161 |
+
#######################################################
|
| 162 |
+
# Read each text input file, parse it into a document,
|
| 163 |
+
# chunk it, collect chunks and document name.
|
| 164 |
+
logger.info("#### Read and chunk input text files.")
|
| 165 |
+
for filename in os.listdir(pathString):
|
| 166 |
+
logger.info(filename)
|
| 167 |
+
path = Path(pathString + "/" + filename)
|
| 168 |
+
filename = filename.rstrip(".html")
|
| 169 |
+
webpageDocNames.append(filename)
|
| 170 |
+
htmlLoader = BSHTMLLoader(path,"utf-8")
|
| 171 |
+
htmlData = htmlLoader.load()
|
| 172 |
+
|
| 173 |
+
title = htmlData[0].metadata['title']
|
| 174 |
+
page_content = htmlData[0].page_content
|
| 175 |
+
|
| 176 |
+
# Clean data. Remove multiple newlines, etc.
|
| 177 |
+
page_content = re.sub(r'\n+', '\n',page_content)
|
| 178 |
+
|
| 179 |
+
page_contentArray.append(page_content);
|
| 180 |
+
webpageTitles.append(title)
|
| 181 |
+
max_tokens = 1000
|
| 182 |
+
tokenizer = Tokenizer.from_pretrained("bert-base-uncased")
|
| 183 |
+
logger.debug(f"### tokenizer: {tokenizer}")
|
| 184 |
+
splitter = HuggingFaceTextSplitter(tokenizer, trim_chunks=True)
|
| 185 |
+
chunksOnePage = splitter.chunks(page_content, chunk_capacity=50)
|
| 186 |
+
|
| 187 |
+
chunks = []
|
| 188 |
+
for chnk in chunksOnePage:
|
| 189 |
+
logger.debug(f"#### chnk in file: {chnk}")
|
| 190 |
+
chunks.append(chnk)
|
| 191 |
+
logger.debug(f"chunks: {chunks}")
|
| 192 |
+
webpageChunks.append(chunks)
|
| 193 |
+
webpageChunksDocNames.append(filename + "Chunks")
|
| 194 |
+
|
| 195 |
+
logger.debug(f"### filename, title: {filename}, {title}")
|
| 196 |
+
|
| 197 |
+
logger.debug(f"### webpageDocNames: {webpageDocNames}")
|
| 198 |
+
|
| 199 |
+
######################################################
|
| 200 |
+
# Create database webpage and chunks collections.
|
| 201 |
+
wpCollection = createWebpageCollection()
|
| 202 |
+
wpChunkCollection = createChunksCollection()
|
| 203 |
+
|
| 204 |
+
###########################################################
|
| 205 |
+
# Create document and chunks objects in the database.
|
| 206 |
+
logger.info("#### Create page/doc and chunk db objects.")
|
| 207 |
+
for i, className in enumerate(webpageDocNames):
|
| 208 |
+
title = webpageTitles[i]
|
| 209 |
+
logger.debug(f"## className, title: {className}, {title}")
|
| 210 |
+
# Create Webpage Object
|
| 211 |
+
page_content = page_contentArray[i]
|
| 212 |
+
# Insert the document.
|
| 213 |
+
wpCollectionObj_uuid = wpCollection.data.insert(
|
| 214 |
+
{
|
| 215 |
+
"name": className,
|
| 216 |
+
"title": title,
|
| 217 |
+
"content": page_content
|
| 218 |
+
}
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# Insert the chunks for the document.
|
| 222 |
+
for i2, chunk in enumerate(webpageChunks[i]):
|
| 223 |
+
chunk_uuid = wpChunkCollection.data.insert(
|
| 224 |
+
{
|
| 225 |
+
"title": title,
|
| 226 |
+
"chunk": chunk,
|
| 227 |
+
"chunk_index": i2,
|
| 228 |
+
"references":
|
| 229 |
+
{
|
| 230 |
+
"webpage": wpCollectionObj_uuid
|
| 231 |
+
}
|
| 232 |
+
}
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
###############################################################################
|
| 236 |
+
# text contains prompt for vector DB.
|
| 237 |
+
text = "human-made computer cognitive ability"
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
###############################################################################
|
| 241 |
+
# Initial the the sentence transformer and encode the query prompt.
|
| 242 |
+
logger.info(f"#### Encode text query prompt to create vectors. {text}")
|
| 243 |
+
model = SentenceTransformer('/app/multi-qa-MiniLM-L6-cos-v1')
|
| 244 |
+
|
| 245 |
+
vector = model.encode(text)
|
| 246 |
+
vectorList = []
|
| 247 |
+
|
| 248 |
+
logger.debug("#### Print vectors.")
|
| 249 |
+
for vec in vector:
|
| 250 |
+
vectorList.append(vec)
|
| 251 |
+
logger.debug(f"vectorList: {vectorList[2]}")
|
| 252 |
+
|
| 253 |
+
# Fetch chunks and print chunks.
|
| 254 |
+
logger.info("#### Retrieve semchunks from db using vectors from prompt.")
|
| 255 |
+
semChunks = wpChunkCollection.query.near_vector(
|
| 256 |
+
near_vector=vectorList,
|
| 257 |
+
distance=0.7,
|
| 258 |
+
limit=3
|
| 259 |
+
)
|
| 260 |
+
logger.debug(f"### semChunks[0]: {semChunks}")
|
| 261 |
+
|
| 262 |
+
# Print chunks, corresponding document and document title.
|
| 263 |
+
logger.info("#### Print individual retrieved chunks.")
|
| 264 |
+
for chunk in enumerate(semChunks.objects):
|
| 265 |
+
logger.info(f"#### chunk: {chunk}")
|
| 266 |
+
webpage_uuid = chunk[1].properties['references']['webpage']
|
| 267 |
+
logger.info(f"webpage_uuid: {webpage_uuid}")
|
| 268 |
+
wpFromChunk = wpCollection.query.fetch_object_by_id(webpage_uuid)
|
| 269 |
+
logger.info(f"### wpFromChunk title: {wpFromChunk.properties['title']}")
|
| 270 |
+
|
| 271 |
+
logger.info("#### Closing client db connection.")
|
| 272 |
+
client.close()
|
| 273 |
+
|
| 274 |
+
logger.info("#### Program terminating.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|