Spaces:
Runtime error
Runtime error
Update src/distilabel_dataset_generator/sft.py
Browse files
src/distilabel_dataset_generator/sft.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import multiprocessing
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import pandas as pd
|
|
@@ -179,7 +180,8 @@ def _run_pipeline(result_queue, num_turns, num_rows, system_prompt, token: str =
|
|
| 179 |
result_queue.put(distiset)
|
| 180 |
|
| 181 |
|
| 182 |
-
def generate_system_prompt(dataset_description, token: OAuthToken = None):
|
|
|
|
| 183 |
generate_description = TextGeneration(
|
| 184 |
llm=InferenceEndpointsLLM(
|
| 185 |
model_id=MODEL,
|
|
@@ -192,8 +194,10 @@ def generate_system_prompt(dataset_description, token: OAuthToken = None):
|
|
| 192 |
),
|
| 193 |
use_system_prompt=True,
|
| 194 |
)
|
|
|
|
| 195 |
generate_description.load()
|
| 196 |
-
|
|
|
|
| 197 |
generate_description.process(
|
| 198 |
[
|
| 199 |
{
|
|
@@ -203,6 +207,15 @@ def generate_system_prompt(dataset_description, token: OAuthToken = None):
|
|
| 203 |
]
|
| 204 |
)
|
| 205 |
)[0]["generation"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
|
| 208 |
def generate_dataset(
|
|
@@ -213,6 +226,7 @@ def generate_dataset(
|
|
| 213 |
orgs_selector=None,
|
| 214 |
dataset_name=None,
|
| 215 |
token: OAuthToken = None,
|
|
|
|
| 216 |
):
|
| 217 |
if dataset_name is not None:
|
| 218 |
if not dataset_name:
|
|
@@ -242,7 +256,7 @@ def generate_dataset(
|
|
| 242 |
duration = 1000
|
| 243 |
|
| 244 |
gr.Info(
|
| 245 |
-
"
|
| 246 |
duration=duration,
|
| 247 |
)
|
| 248 |
result_queue = multiprocessing.Queue()
|
|
@@ -250,15 +264,24 @@ def generate_dataset(
|
|
| 250 |
target=_run_pipeline,
|
| 251 |
args=(result_queue, num_turns, num_rows, system_prompt),
|
| 252 |
)
|
|
|
|
| 253 |
try:
|
| 254 |
p.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 255 |
p.join()
|
| 256 |
except Exception as e:
|
| 257 |
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
|
|
|
|
|
|
|
| 258 |
distiset = result_queue.get()
|
| 259 |
|
| 260 |
if dataset_name is not None:
|
| 261 |
-
|
| 262 |
repo_id = f"{orgs_selector}/{dataset_name}"
|
| 263 |
distiset.push_to_hub(
|
| 264 |
repo_id=repo_id,
|
|
@@ -269,31 +292,30 @@ def generate_dataset(
|
|
| 269 |
gr.Info(
|
| 270 |
f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
|
| 271 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
else:
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
outputs["content"].append(message["content"])
|
| 285 |
-
return pd.DataFrame(outputs)
|
| 286 |
|
| 287 |
|
| 288 |
with gr.Blocks(
|
| 289 |
title="โ๏ธ Distilabel Dataset Generator",
|
| 290 |
head="โ๏ธ Distilabel Dataset Generator",
|
| 291 |
) as app:
|
| 292 |
-
gr.Markdown(
|
| 293 |
-
"""
|
| 294 |
-
|
| 295 |
-
"""
|
| 296 |
-
)
|
| 297 |
dataset_description = gr.TextArea(
|
| 298 |
label="Provide a description of the dataset",
|
| 299 |
value=DEFAULT_SYSTEM_PROMPT_DESCRIPTION,
|
|
@@ -316,25 +338,38 @@ with gr.Blocks(
|
|
| 316 |
value="Regenerate sample dataset",
|
| 317 |
)
|
| 318 |
gr.Column(scale=1)
|
| 319 |
-
|
| 320 |
-
table = gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
|
| 322 |
btn_generate_system_prompt.click(
|
| 323 |
fn=generate_system_prompt,
|
| 324 |
inputs=[dataset_description],
|
| 325 |
outputs=[system_prompt],
|
|
|
|
| 326 |
).then(
|
| 327 |
-
fn=
|
| 328 |
inputs=[system_prompt],
|
| 329 |
outputs=[table],
|
|
|
|
| 330 |
)
|
| 331 |
|
| 332 |
btn_generate_sample_dataset.click(
|
| 333 |
-
fn=
|
| 334 |
inputs=[system_prompt],
|
| 335 |
outputs=[table],
|
|
|
|
| 336 |
)
|
| 337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 338 |
btn_login: gr.LoginButton | None = get_login_button()
|
| 339 |
with gr.Column() as push_to_hub_ui:
|
| 340 |
with gr.Row(variant="panel"):
|
|
@@ -371,7 +406,9 @@ with gr.Blocks(
|
|
| 371 |
orgs_selector,
|
| 372 |
dataset_name_push_to_hub,
|
| 373 |
],
|
|
|
|
|
|
|
| 374 |
)
|
| 375 |
|
| 376 |
app.load(get_org_dropdown, outputs=[orgs_selector])
|
| 377 |
-
app.load(fn=swap_visibilty, outputs=push_to_hub_ui)
|
|
|
|
| 1 |
import multiprocessing
|
| 2 |
+
import time
|
| 3 |
|
| 4 |
import gradio as gr
|
| 5 |
import pandas as pd
|
|
|
|
| 180 |
result_queue.put(distiset)
|
| 181 |
|
| 182 |
|
| 183 |
+
def generate_system_prompt(dataset_description, token: OAuthToken = None, progress=gr.Progress()):
|
| 184 |
+
progress(0.1, desc="Initializing text generation")
|
| 185 |
generate_description = TextGeneration(
|
| 186 |
llm=InferenceEndpointsLLM(
|
| 187 |
model_id=MODEL,
|
|
|
|
| 194 |
),
|
| 195 |
use_system_prompt=True,
|
| 196 |
)
|
| 197 |
+
progress(0.4, desc="Loading model")
|
| 198 |
generate_description.load()
|
| 199 |
+
progress(0.7, desc="Generating system prompt")
|
| 200 |
+
result = next(
|
| 201 |
generate_description.process(
|
| 202 |
[
|
| 203 |
{
|
|
|
|
| 207 |
]
|
| 208 |
)
|
| 209 |
)[0]["generation"]
|
| 210 |
+
progress(1.0, desc="System prompt generated")
|
| 211 |
+
return result
|
| 212 |
+
|
| 213 |
+
|
| 214 |
+
def generate_sample_dataset(system_prompt, progress=gr.Progress()):
|
| 215 |
+
progress(0.1, desc="Initializing sample dataset generation")
|
| 216 |
+
result = generate_dataset(system_prompt, num_turns=1, num_rows=2, progress=progress)
|
| 217 |
+
progress(1.0, desc="Sample dataset generated")
|
| 218 |
+
return result
|
| 219 |
|
| 220 |
|
| 221 |
def generate_dataset(
|
|
|
|
| 226 |
orgs_selector=None,
|
| 227 |
dataset_name=None,
|
| 228 |
token: OAuthToken = None,
|
| 229 |
+
progress=gr.Progress(),
|
| 230 |
):
|
| 231 |
if dataset_name is not None:
|
| 232 |
if not dataset_name:
|
|
|
|
| 256 |
duration = 1000
|
| 257 |
|
| 258 |
gr.Info(
|
| 259 |
+
"Dataset generation started. This might take a while. Don't close the page.",
|
| 260 |
duration=duration,
|
| 261 |
)
|
| 262 |
result_queue = multiprocessing.Queue()
|
|
|
|
| 264 |
target=_run_pipeline,
|
| 265 |
args=(result_queue, num_turns, num_rows, system_prompt),
|
| 266 |
)
|
| 267 |
+
|
| 268 |
try:
|
| 269 |
p.start()
|
| 270 |
+
total_steps = 100
|
| 271 |
+
for step in range(total_steps):
|
| 272 |
+
if not p.is_alive():
|
| 273 |
+
break
|
| 274 |
+
progress((step + 1) / total_steps, desc=f"Generating dataset with {num_rows} rows")
|
| 275 |
+
time.sleep(0.5) # Adjust this value based on your needs
|
| 276 |
p.join()
|
| 277 |
except Exception as e:
|
| 278 |
raise gr.Error(f"An error occurred during dataset generation: {str(e)}")
|
| 279 |
+
|
| 280 |
+
|
| 281 |
distiset = result_queue.get()
|
| 282 |
|
| 283 |
if dataset_name is not None:
|
| 284 |
+
progress(0.95, desc="Pushing dataset to Hugging Face Hub.")
|
| 285 |
repo_id = f"{orgs_selector}/{dataset_name}"
|
| 286 |
distiset.push_to_hub(
|
| 287 |
repo_id=repo_id,
|
|
|
|
| 292 |
gr.Info(
|
| 293 |
f'Dataset pushed to Hugging Face Hub: <a href="https://huggingface.co/datasets/{repo_id}">https://huggingface.co/datasets/{repo_id}</a>'
|
| 294 |
)
|
| 295 |
+
|
| 296 |
+
# If not pushing to hub generate the dataset directly
|
| 297 |
+
distiset = distiset["default"]["train"]
|
| 298 |
+
if num_turns == 1:
|
| 299 |
+
outputs = distiset.to_pandas()[["prompt", "completion"]]
|
| 300 |
else:
|
| 301 |
+
outputs = distiset.to_pandas()[["messages"]]
|
| 302 |
+
# outputs = {"conversation_id": [], "role": [], "content": []}
|
| 303 |
+
# conversations = distiset["messages"]
|
| 304 |
+
# for idx, entry in enumerate(conversations):
|
| 305 |
+
# for message in entry["messages"]:
|
| 306 |
+
# outputs["conversation_id"].append(idx + 1)
|
| 307 |
+
# outputs["role"].append(message["role"])
|
| 308 |
+
# outputs["content"].append(message["content"])
|
| 309 |
+
|
| 310 |
+
progress(1.0, desc="Dataset generation completed")
|
| 311 |
+
return pd.DataFrame(outputs)
|
|
|
|
|
|
|
| 312 |
|
| 313 |
|
| 314 |
with gr.Blocks(
|
| 315 |
title="โ๏ธ Distilabel Dataset Generator",
|
| 316 |
head="โ๏ธ Distilabel Dataset Generator",
|
| 317 |
) as app:
|
| 318 |
+
gr.Markdown("## Iterate on a sample dataset")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
dataset_description = gr.TextArea(
|
| 320 |
label="Provide a description of the dataset",
|
| 321 |
value=DEFAULT_SYSTEM_PROMPT_DESCRIPTION,
|
|
|
|
| 338 |
value="Regenerate sample dataset",
|
| 339 |
)
|
| 340 |
gr.Column(scale=1)
|
| 341 |
+
|
| 342 |
+
#table = gr.HTML(_format_dataframe_as_html(DEFAULT_DATASET))
|
| 343 |
+
table = gr.DataFrame(
|
| 344 |
+
value=DEFAULT_DATASET,
|
| 345 |
+
interactive=False,
|
| 346 |
+
wrap=True,
|
| 347 |
+
|
| 348 |
+
)
|
| 349 |
|
| 350 |
btn_generate_system_prompt.click(
|
| 351 |
fn=generate_system_prompt,
|
| 352 |
inputs=[dataset_description],
|
| 353 |
outputs=[system_prompt],
|
| 354 |
+
show_progress=True,
|
| 355 |
).then(
|
| 356 |
+
fn=generate_sample_dataset,
|
| 357 |
inputs=[system_prompt],
|
| 358 |
outputs=[table],
|
| 359 |
+
show_progress=True,
|
| 360 |
)
|
| 361 |
|
| 362 |
btn_generate_sample_dataset.click(
|
| 363 |
+
fn=generate_sample_dataset,
|
| 364 |
inputs=[system_prompt],
|
| 365 |
outputs=[table],
|
| 366 |
+
show_progress=True,
|
| 367 |
)
|
| 368 |
|
| 369 |
+
# Add a header for the full dataset generation section
|
| 370 |
+
gr.Markdown("## Generate full dataset and push to hub")
|
| 371 |
+
gr.Markdown("Once you're satisfied with the sample, generate a larger dataset and push it to the hub.")
|
| 372 |
+
|
| 373 |
btn_login: gr.LoginButton | None = get_login_button()
|
| 374 |
with gr.Column() as push_to_hub_ui:
|
| 375 |
with gr.Row(variant="panel"):
|
|
|
|
| 406 |
orgs_selector,
|
| 407 |
dataset_name_push_to_hub,
|
| 408 |
],
|
| 409 |
+
outputs=[table],
|
| 410 |
+
show_progress=True,
|
| 411 |
)
|
| 412 |
|
| 413 |
app.load(get_org_dropdown, outputs=[orgs_selector])
|
| 414 |
+
app.load(fn=swap_visibilty, outputs=push_to_hub_ui)
|