Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,462 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utility functions for AI Dataset Studio
|
| 3 |
+
Common helpers for text processing, validation, and data manipulation
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import re
|
| 7 |
+
import hashlib
|
| 8 |
+
import json
|
| 9 |
+
import csv
|
| 10 |
+
import io
|
| 11 |
+
from typing import List, Dict, Any, Optional, Tuple, Union
|
| 12 |
+
from urllib.parse import urlparse, urljoin
|
| 13 |
+
from datetime import datetime
|
| 14 |
+
import logging
|
| 15 |
+
|
| 16 |
+
logger = logging.getLogger(__name__)
|
| 17 |
+
|
| 18 |
+
def clean_text(text: str, aggressive: bool = False) -> str:
|
| 19 |
+
"""
|
| 20 |
+
Clean text content with various strategies
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
text: Input text to clean
|
| 24 |
+
aggressive: Whether to apply aggressive cleaning
|
| 25 |
+
|
| 26 |
+
Returns:
|
| 27 |
+
Cleaned text
|
| 28 |
+
"""
|
| 29 |
+
if not text:
|
| 30 |
+
return ""
|
| 31 |
+
|
| 32 |
+
# Basic cleaning
|
| 33 |
+
text = text.strip()
|
| 34 |
+
|
| 35 |
+
# Remove excessive whitespace
|
| 36 |
+
text = re.sub(r'\s+', ' ', text)
|
| 37 |
+
|
| 38 |
+
# Remove URLs if aggressive
|
| 39 |
+
if aggressive:
|
| 40 |
+
text = re.sub(r'http\S+|www\.\S+', '', text)
|
| 41 |
+
text = re.sub(r'\S+@\S+', '', text) # Email addresses
|
| 42 |
+
|
| 43 |
+
# Fix common encoding issues
|
| 44 |
+
text = text.replace('’', "'")
|
| 45 |
+
text = text.replace('“', '"')
|
| 46 |
+
text = text.replace('â€', '"')
|
| 47 |
+
text = text.replace('â€"', '—')
|
| 48 |
+
|
| 49 |
+
# Remove excessive punctuation
|
| 50 |
+
text = re.sub(r'[!?]{3,}', '!!!', text)
|
| 51 |
+
text = re.sub(r'\.{4,}', '...', text)
|
| 52 |
+
|
| 53 |
+
# Clean up quotes and apostrophes
|
| 54 |
+
text = re.sub(r'["""]', '"', text)
|
| 55 |
+
text = re.sub(r'[''']', "'", text)
|
| 56 |
+
|
| 57 |
+
return text.strip()
|
| 58 |
+
|
| 59 |
+
def extract_urls_from_text(text: str) -> List[str]:
|
| 60 |
+
"""Extract URLs from text content"""
|
| 61 |
+
url_pattern = r'https?://(?:[-\w.])+(?:[:\d]+)?(?:/(?:[\w/_.])*(?:\?(?:[\w&=%.])*)?(?:#(?:[\w.])*)?)?'
|
| 62 |
+
urls = re.findall(url_pattern, text)
|
| 63 |
+
return list(set(urls)) # Remove duplicates
|
| 64 |
+
|
| 65 |
+
def validate_url(url: str) -> Tuple[bool, str]:
|
| 66 |
+
"""
|
| 67 |
+
Validate URL format and basic security checks
|
| 68 |
+
|
| 69 |
+
Returns:
|
| 70 |
+
Tuple of (is_valid, error_message)
|
| 71 |
+
"""
|
| 72 |
+
try:
|
| 73 |
+
if not url or not url.strip():
|
| 74 |
+
return False, "Empty URL"
|
| 75 |
+
|
| 76 |
+
url = url.strip()
|
| 77 |
+
|
| 78 |
+
# Basic format check
|
| 79 |
+
parsed = urlparse(url)
|
| 80 |
+
|
| 81 |
+
if not parsed.scheme:
|
| 82 |
+
return False, "Missing scheme (http:// or https://)"
|
| 83 |
+
|
| 84 |
+
if parsed.scheme not in ['http', 'https']:
|
| 85 |
+
return False, f"Invalid scheme: {parsed.scheme}"
|
| 86 |
+
|
| 87 |
+
if not parsed.netloc:
|
| 88 |
+
return False, "Invalid domain"
|
| 89 |
+
|
| 90 |
+
# Check for suspicious patterns
|
| 91 |
+
suspicious_patterns = [
|
| 92 |
+
r'localhost',
|
| 93 |
+
r'127\.0\.0\.1',
|
| 94 |
+
r'192\.168\.',
|
| 95 |
+
r'10\.',
|
| 96 |
+
r'172\.(1[6-9]|2[0-9]|3[01])\.'
|
| 97 |
+
]
|
| 98 |
+
|
| 99 |
+
for pattern in suspicious_patterns:
|
| 100 |
+
if re.search(pattern, parsed.netloc, re.IGNORECASE):
|
| 101 |
+
return False, "Access to internal networks not allowed"
|
| 102 |
+
|
| 103 |
+
return True, "Valid URL"
|
| 104 |
+
|
| 105 |
+
except Exception as e:
|
| 106 |
+
return False, f"URL validation error: {str(e)}"
|
| 107 |
+
|
| 108 |
+
def parse_urls_from_file(file_content: bytes, filename: str) -> List[str]:
|
| 109 |
+
"""
|
| 110 |
+
Parse URLs from uploaded file content
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
file_content: File content as bytes
|
| 114 |
+
filename: Original filename for format detection
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
List of extracted URLs
|
| 118 |
+
"""
|
| 119 |
+
try:
|
| 120 |
+
# Decode content
|
| 121 |
+
try:
|
| 122 |
+
content = file_content.decode('utf-8')
|
| 123 |
+
except UnicodeDecodeError:
|
| 124 |
+
content = file_content.decode('latin-1')
|
| 125 |
+
|
| 126 |
+
urls = []
|
| 127 |
+
|
| 128 |
+
# Handle different file formats
|
| 129 |
+
if filename.lower().endswith('.csv'):
|
| 130 |
+
# Try to parse as CSV
|
| 131 |
+
reader = csv.DictReader(io.StringIO(content))
|
| 132 |
+
for row in reader:
|
| 133 |
+
# Look for URL column (flexible naming)
|
| 134 |
+
url_columns = ['url', 'URL', 'link', 'Link', 'href', 'address']
|
| 135 |
+
for col in url_columns:
|
| 136 |
+
if col in row and row[col]:
|
| 137 |
+
urls.append(row[col].strip())
|
| 138 |
+
break
|
| 139 |
+
else:
|
| 140 |
+
# Treat as plain text (one URL per line)
|
| 141 |
+
lines = content.split('\n')
|
| 142 |
+
for line in lines:
|
| 143 |
+
line = line.strip()
|
| 144 |
+
if line and not line.startswith('#'): # Skip comments
|
| 145 |
+
# Extract URLs from line
|
| 146 |
+
extracted = extract_urls_from_text(line)
|
| 147 |
+
if extracted:
|
| 148 |
+
urls.extend(extracted)
|
| 149 |
+
elif validate_url(line)[0]: # Check if line itself is a URL
|
| 150 |
+
urls.append(line)
|
| 151 |
+
|
| 152 |
+
# Remove duplicates while preserving order
|
| 153 |
+
seen = set()
|
| 154 |
+
unique_urls = []
|
| 155 |
+
for url in urls:
|
| 156 |
+
if url not in seen:
|
| 157 |
+
seen.add(url)
|
| 158 |
+
unique_urls.append(url)
|
| 159 |
+
|
| 160 |
+
return unique_urls
|
| 161 |
+
|
| 162 |
+
except Exception as e:
|
| 163 |
+
logger.error(f"Error parsing URLs from file: {e}")
|
| 164 |
+
return []
|
| 165 |
+
|
| 166 |
+
def calculate_text_similarity(text1: str, text2: str) -> float:
|
| 167 |
+
"""
|
| 168 |
+
Calculate similarity between two texts using simple methods
|
| 169 |
+
|
| 170 |
+
Returns:
|
| 171 |
+
Similarity score between 0 and 1
|
| 172 |
+
"""
|
| 173 |
+
if not text1 or not text2:
|
| 174 |
+
return 0.0
|
| 175 |
+
|
| 176 |
+
# Simple character-level similarity
|
| 177 |
+
text1 = text1.lower().strip()
|
| 178 |
+
text2 = text2.lower().strip()
|
| 179 |
+
|
| 180 |
+
if text1 == text2:
|
| 181 |
+
return 1.0
|
| 182 |
+
|
| 183 |
+
# Jaccard similarity on words
|
| 184 |
+
words1 = set(text1.split())
|
| 185 |
+
words2 = set(text2.split())
|
| 186 |
+
|
| 187 |
+
if not words1 and not words2:
|
| 188 |
+
return 1.0
|
| 189 |
+
if not words1 or not words2:
|
| 190 |
+
return 0.0
|
| 191 |
+
|
| 192 |
+
intersection = len(words1.intersection(words2))
|
| 193 |
+
union = len(words1.union(words2))
|
| 194 |
+
|
| 195 |
+
return intersection / union if union > 0 else 0.0
|
| 196 |
+
|
| 197 |
+
def detect_content_type(text: str) -> str:
|
| 198 |
+
"""
|
| 199 |
+
Detect the type of content based on text analysis
|
| 200 |
+
|
| 201 |
+
Returns:
|
| 202 |
+
Content type string
|
| 203 |
+
"""
|
| 204 |
+
if not text:
|
| 205 |
+
return "empty"
|
| 206 |
+
|
| 207 |
+
text_lower = text.lower()
|
| 208 |
+
|
| 209 |
+
# Check for common patterns
|
| 210 |
+
if any(word in text_lower for word in ['abstract:', 'introduction:', 'conclusion:', 'references:']):
|
| 211 |
+
return "academic"
|
| 212 |
+
elif any(word in text_lower for word in ['news', 'reported', 'according to', 'sources say']):
|
| 213 |
+
return "news"
|
| 214 |
+
elif any(word in text_lower for word in ['review', 'rating', 'stars', 'recommend']):
|
| 215 |
+
return "review"
|
| 216 |
+
elif any(word in text_lower for word in ['blog', 'posted by', 'share this']):
|
| 217 |
+
return "blog"
|
| 218 |
+
elif re.search(r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b', text):
|
| 219 |
+
return "dated_content"
|
| 220 |
+
else:
|
| 221 |
+
return "general"
|
| 222 |
+
|
| 223 |
+
def extract_metadata_from_text(text: str) -> Dict[str, Any]:
|
| 224 |
+
"""
|
| 225 |
+
Extract metadata from text content
|
| 226 |
+
|
| 227 |
+
Returns:
|
| 228 |
+
Dictionary of extracted metadata
|
| 229 |
+
"""
|
| 230 |
+
metadata = {}
|
| 231 |
+
|
| 232 |
+
# Extract dates
|
| 233 |
+
date_patterns = [
|
| 234 |
+
r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
|
| 235 |
+
r'\b\d{4}[/-]\d{1,2}[/-]\d{1,2}\b',
|
| 236 |
+
r'\b(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z]* \d{1,2},? \d{4}\b'
|
| 237 |
+
]
|
| 238 |
+
|
| 239 |
+
dates = []
|
| 240 |
+
for pattern in date_patterns:
|
| 241 |
+
dates.extend(re.findall(pattern, text, re.IGNORECASE))
|
| 242 |
+
|
| 243 |
+
if dates:
|
| 244 |
+
metadata['extracted_dates'] = dates[:5] # Limit to first 5
|
| 245 |
+
|
| 246 |
+
# Extract numbers and statistics
|
| 247 |
+
numbers = re.findall(r'\b\d{1,3}(?:,\d{3})*(?:\.\d+)?\b', text)
|
| 248 |
+
if numbers:
|
| 249 |
+
metadata['numbers'] = numbers[:10] # Limit to first 10
|
| 250 |
+
|
| 251 |
+
# Extract email addresses
|
| 252 |
+
emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text)
|
| 253 |
+
if emails:
|
| 254 |
+
metadata['emails'] = emails[:5]
|
| 255 |
+
|
| 256 |
+
# Extract phone numbers (basic pattern)
|
| 257 |
+
phones = re.findall(r'\b\d{3}[-.]?\d{3}[-.]?\d{4}\b', text)
|
| 258 |
+
if phones:
|
| 259 |
+
metadata['phones'] = phones[:5]
|
| 260 |
+
|
| 261 |
+
# Extract capitalized words (potential names/entities)
|
| 262 |
+
capitalized = re.findall(r'\b[A-Z][a-z]+(?:\s[A-Z][a-z]+)*\b', text)
|
| 263 |
+
if capitalized:
|
| 264 |
+
# Filter common words
|
| 265 |
+
common_words = {'The', 'This', 'That', 'There', 'Then', 'They', 'These', 'Those'}
|
| 266 |
+
filtered = [word for word in capitalized if word not in common_words]
|
| 267 |
+
metadata['capitalized_terms'] = list(set(filtered))[:20]
|
| 268 |
+
|
| 269 |
+
return metadata
|
| 270 |
+
|
| 271 |
+
def generate_content_hash(text: str) -> str:
|
| 272 |
+
"""Generate a hash for content deduplication"""
|
| 273 |
+
# Normalize text for hashing
|
| 274 |
+
normalized = re.sub(r'\s+', ' ', text.lower().strip())
|
| 275 |
+
return hashlib.md5(normalized.encode('utf-8')).hexdigest()
|
| 276 |
+
|
| 277 |
+
def format_file_size(size_bytes: int) -> str:
|
| 278 |
+
"""Format file size in human readable format"""
|
| 279 |
+
if size_bytes == 0:
|
| 280 |
+
return "0 B"
|
| 281 |
+
|
| 282 |
+
size_names = ["B", "KB", "MB", "GB"]
|
| 283 |
+
i = 0
|
| 284 |
+
while size_bytes >= 1024 and i < len(size_names) - 1:
|
| 285 |
+
size_bytes /= 1024.0
|
| 286 |
+
i += 1
|
| 287 |
+
|
| 288 |
+
return f"{size_bytes:.1f} {size_names[i]}"
|
| 289 |
+
|
| 290 |
+
def estimate_reading_time(text: str, words_per_minute: int = 200) -> int:
|
| 291 |
+
"""Estimate reading time in minutes"""
|
| 292 |
+
word_count = len(text.split())
|
| 293 |
+
return max(1, round(word_count / words_per_minute))
|
| 294 |
+
|
| 295 |
+
def truncate_text(text: str, max_length: int, suffix: str = "...") -> str:
|
| 296 |
+
"""Truncate text to maximum length with suffix"""
|
| 297 |
+
if len(text) <= max_length:
|
| 298 |
+
return text
|
| 299 |
+
|
| 300 |
+
return text[:max_length - len(suffix)] + suffix
|
| 301 |
+
|
| 302 |
+
def create_filename_safe_string(text: str, max_length: int = 50) -> str:
|
| 303 |
+
"""Create a filesystem-safe string from text"""
|
| 304 |
+
# Remove/replace problematic characters
|
| 305 |
+
safe_text = re.sub(r'[<>:"/\\|?*]', '_', text)
|
| 306 |
+
safe_text = re.sub(r'\s+', '_', safe_text)
|
| 307 |
+
safe_text = safe_text.strip('._')
|
| 308 |
+
|
| 309 |
+
# Truncate if too long
|
| 310 |
+
if len(safe_text) > max_length:
|
| 311 |
+
safe_text = safe_text[:max_length].rstrip('_')
|
| 312 |
+
|
| 313 |
+
return safe_text or "untitled"
|
| 314 |
+
|
| 315 |
+
def validate_dataset_format(data: List[Dict[str, Any]], required_fields: List[str]) -> Tuple[bool, List[str]]:
|
| 316 |
+
"""
|
| 317 |
+
Validate dataset format against required fields
|
| 318 |
+
|
| 319 |
+
Returns:
|
| 320 |
+
Tuple of (is_valid, list_of_errors)
|
| 321 |
+
"""
|
| 322 |
+
errors = []
|
| 323 |
+
|
| 324 |
+
if not data:
|
| 325 |
+
errors.append("Dataset is empty")
|
| 326 |
+
return False, errors
|
| 327 |
+
|
| 328 |
+
# Check each item
|
| 329 |
+
for i, item in enumerate(data[:10]): # Check first 10 items
|
| 330 |
+
if not isinstance(item, dict):
|
| 331 |
+
errors.append(f"Item {i} is not a dictionary")
|
| 332 |
+
continue
|
| 333 |
+
|
| 334 |
+
# Check required fields
|
| 335 |
+
for field in required_fields:
|
| 336 |
+
if field not in item:
|
| 337 |
+
errors.append(f"Item {i} missing required field: {field}")
|
| 338 |
+
elif not item[field]: # Check for empty values
|
| 339 |
+
errors.append(f"Item {i} has empty value for field: {field}")
|
| 340 |
+
|
| 341 |
+
return len(errors) == 0, errors
|
| 342 |
+
|
| 343 |
+
def create_progress_message(current: int, total: int, operation: str = "Processing") -> str:
|
| 344 |
+
"""Create a formatted progress message"""
|
| 345 |
+
percentage = (current / total * 100) if total > 0 else 0
|
| 346 |
+
return f"{operation} {current}/{total} ({percentage:.1f}%)"
|
| 347 |
+
|
| 348 |
+
def sanitize_text_for_json(text: str) -> str:
|
| 349 |
+
"""Sanitize text for safe JSON serialization"""
|
| 350 |
+
if not text:
|
| 351 |
+
return ""
|
| 352 |
+
|
| 353 |
+
# Replace problematic characters
|
| 354 |
+
text = text.replace('\x00', '') # Remove null bytes
|
| 355 |
+
text = re.sub(r'[\x00-\x1f\x7f-\x9f]', ' ', text) # Remove control characters
|
| 356 |
+
|
| 357 |
+
return text
|
| 358 |
+
|
| 359 |
+
def extract_domain_from_url(url: str) -> str:
|
| 360 |
+
"""Extract domain from URL"""
|
| 361 |
+
try:
|
| 362 |
+
parsed = urlparse(url)
|
| 363 |
+
return parsed.netloc.lower()
|
| 364 |
+
except:
|
| 365 |
+
return "unknown"
|
| 366 |
+
|
| 367 |
+
def analyze_text_quality(text: str) -> Dict[str, Any]:
|
| 368 |
+
"""
|
| 369 |
+
Analyze text quality and return metrics
|
| 370 |
+
|
| 371 |
+
Returns:
|
| 372 |
+
Dictionary with quality metrics
|
| 373 |
+
"""
|
| 374 |
+
if not text:
|
| 375 |
+
return {'score': 0.0, 'issues': ['Empty text']}
|
| 376 |
+
|
| 377 |
+
issues = []
|
| 378 |
+
score = 1.0
|
| 379 |
+
|
| 380 |
+
# Length checks
|
| 381 |
+
word_count = len(text.split())
|
| 382 |
+
if word_count < 10:
|
| 383 |
+
issues.append('Too short (< 10 words)')
|
| 384 |
+
score -= 0.3
|
| 385 |
+
elif word_count < 50:
|
| 386 |
+
score -= 0.1
|
| 387 |
+
|
| 388 |
+
# Character checks
|
| 389 |
+
if len(text) < 100:
|
| 390 |
+
issues.append('Very short content')
|
| 391 |
+
score -= 0.2
|
| 392 |
+
|
| 393 |
+
# Language quality checks
|
| 394 |
+
uppercase_ratio = sum(1 for c in text if c.isupper()) / len(text)
|
| 395 |
+
if uppercase_ratio > 0.3:
|
| 396 |
+
issues.append('Excessive uppercase')
|
| 397 |
+
score -= 0.2
|
| 398 |
+
|
| 399 |
+
# Punctuation checks
|
| 400 |
+
sentence_endings = text.count('.') + text.count('!') + text.count('?')
|
| 401 |
+
if word_count > 50 and sentence_endings < 2:
|
| 402 |
+
issues.append('Few sentence endings')
|
| 403 |
+
score -= 0.1
|
| 404 |
+
|
| 405 |
+
# Excessive repetition check
|
| 406 |
+
words = text.lower().split()
|
| 407 |
+
if len(words) > 10:
|
| 408 |
+
unique_words = set(words)
|
| 409 |
+
if len(unique_words) / len(words) < 0.5:
|
| 410 |
+
issues.append('High word repetition')
|
| 411 |
+
score -= 0.2
|
| 412 |
+
|
| 413 |
+
# Special character checks
|
| 414 |
+
special_char_ratio = sum(1 for c in text if not c.isalnum() and not c.isspace()) / len(text)
|
| 415 |
+
if special_char_ratio > 0.1:
|
| 416 |
+
issues.append('Many special characters')
|
| 417 |
+
score -= 0.1
|
| 418 |
+
|
| 419 |
+
return {
|
| 420 |
+
'score': max(0.0, score),
|
| 421 |
+
'word_count': word_count,
|
| 422 |
+
'char_count': len(text),
|
| 423 |
+
'uppercase_ratio': uppercase_ratio,
|
| 424 |
+
'special_char_ratio': special_char_ratio,
|
| 425 |
+
'issues': issues
|
| 426 |
+
}
|
| 427 |
+
|
| 428 |
+
# Dataset template utilities
|
| 429 |
+
def create_classification_example(text: str, label: str, confidence: float = 1.0) -> Dict[str, Any]:
|
| 430 |
+
"""Create a text classification example"""
|
| 431 |
+
return {
|
| 432 |
+
'text': text,
|
| 433 |
+
'label': label,
|
| 434 |
+
'confidence': confidence
|
| 435 |
+
}
|
| 436 |
+
|
| 437 |
+
def create_ner_example(text: str, entities: List[Dict[str, Any]]) -> Dict[str, Any]:
|
| 438 |
+
"""Create a named entity recognition example"""
|
| 439 |
+
return {
|
| 440 |
+
'text': text,
|
| 441 |
+
'entities': entities
|
| 442 |
+
}
|
| 443 |
+
|
| 444 |
+
def create_qa_example(context: str, question: str, answer: str, answer_start: int = None) -> Dict[str, Any]:
|
| 445 |
+
"""Create a question answering example"""
|
| 446 |
+
example = {
|
| 447 |
+
'context': context,
|
| 448 |
+
'question': question,
|
| 449 |
+
'answer': answer
|
| 450 |
+
}
|
| 451 |
+
|
| 452 |
+
if answer_start is not None:
|
| 453 |
+
example['answer_start'] = answer_start
|
| 454 |
+
|
| 455 |
+
return example
|
| 456 |
+
|
| 457 |
+
def create_summarization_example(text: str, summary: str) -> Dict[str, Any]:
|
| 458 |
+
"""Create a text summarization example"""
|
| 459 |
+
return {
|
| 460 |
+
'text': text,
|
| 461 |
+
'summary': summary
|
| 462 |
+
}
|