AkinyemiAra commited on
Commit
e6e631c
·
verified ·
1 Parent(s): fb6458d

initial commit

Browse files
Files changed (2) hide show
  1. app.py +72 -3
  2. requirements.txt +4 -0
app.py CHANGED
@@ -1,7 +1,76 @@
1
  import gradio as gr
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  demo.launch()
 
1
  import gradio as gr
2
+ from transformers import CLIPProcessor, CLIPModel
3
+ from PIL import Image
4
+ import torch
5
+ import pickle
6
+ from pathlib import Path
7
+ import os
8
+ import spaces
9
 
10
+ # Load model/processor
11
+ model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
12
+ processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
13
+ model.eval()
14
 
15
+ DATASET_DIR = Path("dataset")
16
+ CACHE_FILE = "cache.pkl"
17
+
18
+ def preprocess_image(image: Image.Image) -> Image.Image:
19
+ return image.resize((224, 224)).convert("RGB")
20
+
21
+ def get_embedding(image: Image.Image, device="cpu"):
22
+ image = preprocess_image(image)
23
+ inputs = processor(images=image, return_tensors="pt").to(device)
24
+ model_device = model.to(device)
25
+ with torch.no_grad():
26
+ emb = model_device.get_image_features(**inputs)
27
+ emb = emb / emb.norm(p=2, dim=-1, keepdim=True)
28
+ return emb
29
+
30
+ def get_reference_embeddings():
31
+ if os.path.exists(CACHE_FILE):
32
+ with open(CACHE_FILE, "rb") as f:
33
+ return pickle.load(f)
34
+
35
+ embeddings = {}
36
+ for img_path in DATASET_DIR.glob("*.jpg"):
37
+ img = Image.open(img_path).convert("RGB")
38
+ emb = get_embedding(img)
39
+ embeddings[img_path.name] = emb
40
+ with open(CACHE_FILE, "wb") as f:
41
+ pickle.dump(embeddings, f)
42
+ return embeddings
43
+
44
+ reference_embeddings = get_reference_embeddings()
45
+
46
+ @spaces.GPU
47
+ def search_similar(query_img):
48
+ query_emb = get_embedding(query_img, device="cuda")
49
+ results = []
50
+ for name, ref_emb in reference_embeddings.items():
51
+ sim = torch.nn.functional.cosine_similarity(query_emb, ref_emb.to("cuda")).item()
52
+ results.append((name, sim))
53
+ results.sort(key=lambda x: x[1], reverse=True)
54
+ return [(f"dataset/{name}", f"Score: {score:.4f}") for name, score in results[:5]]
55
+
56
+ def add_image(name: str, image):
57
+ path = DATASET_DIR / f"{name}.jpg"
58
+ image.save(path)
59
+ emb = get_embedding(image)
60
+ reference_embeddings[f"{name}.jpg"] = emb
61
+ with open(CACHE_FILE, "wb") as f:
62
+ pickle.dump(reference_embeddings, f)
63
+ return f"Image {name} added to dataset."
64
+
65
+ search_interface = gr.Interface(fn=search_similar,
66
+ inputs=gr.Image(type="pil", label="Query Image"),
67
+ outputs=gr.Gallery(label="Top Matches").style(grid=5),
68
+ allow_flagging="never")
69
+
70
+ add_interface = gr.Interface(fn=add_image,
71
+ inputs=[gr.Text(label="Image Name"), gr.Image(type="pil", label="Product Image")],
72
+ outputs="text",
73
+ allow_flagging="never")
74
+
75
+ demo = gr.TabbedInterface([search_interface, add_interface], tab_names=["Search", "Add Product"])
76
  demo.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ gradio
4
+ spaces