initial commit
Browse files- app.py +72 -3
- requirements.txt +4 -0
app.py
CHANGED
@@ -1,7 +1,76 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import CLIPProcessor, CLIPModel
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import pickle
|
6 |
+
from pathlib import Path
|
7 |
+
import os
|
8 |
+
import spaces
|
9 |
|
10 |
+
# Load model/processor
|
11 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
12 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
13 |
+
model.eval()
|
14 |
|
15 |
+
DATASET_DIR = Path("dataset")
|
16 |
+
CACHE_FILE = "cache.pkl"
|
17 |
+
|
18 |
+
def preprocess_image(image: Image.Image) -> Image.Image:
|
19 |
+
return image.resize((224, 224)).convert("RGB")
|
20 |
+
|
21 |
+
def get_embedding(image: Image.Image, device="cpu"):
|
22 |
+
image = preprocess_image(image)
|
23 |
+
inputs = processor(images=image, return_tensors="pt").to(device)
|
24 |
+
model_device = model.to(device)
|
25 |
+
with torch.no_grad():
|
26 |
+
emb = model_device.get_image_features(**inputs)
|
27 |
+
emb = emb / emb.norm(p=2, dim=-1, keepdim=True)
|
28 |
+
return emb
|
29 |
+
|
30 |
+
def get_reference_embeddings():
|
31 |
+
if os.path.exists(CACHE_FILE):
|
32 |
+
with open(CACHE_FILE, "rb") as f:
|
33 |
+
return pickle.load(f)
|
34 |
+
|
35 |
+
embeddings = {}
|
36 |
+
for img_path in DATASET_DIR.glob("*.jpg"):
|
37 |
+
img = Image.open(img_path).convert("RGB")
|
38 |
+
emb = get_embedding(img)
|
39 |
+
embeddings[img_path.name] = emb
|
40 |
+
with open(CACHE_FILE, "wb") as f:
|
41 |
+
pickle.dump(embeddings, f)
|
42 |
+
return embeddings
|
43 |
+
|
44 |
+
reference_embeddings = get_reference_embeddings()
|
45 |
+
|
46 |
+
@spaces.GPU
|
47 |
+
def search_similar(query_img):
|
48 |
+
query_emb = get_embedding(query_img, device="cuda")
|
49 |
+
results = []
|
50 |
+
for name, ref_emb in reference_embeddings.items():
|
51 |
+
sim = torch.nn.functional.cosine_similarity(query_emb, ref_emb.to("cuda")).item()
|
52 |
+
results.append((name, sim))
|
53 |
+
results.sort(key=lambda x: x[1], reverse=True)
|
54 |
+
return [(f"dataset/{name}", f"Score: {score:.4f}") for name, score in results[:5]]
|
55 |
+
|
56 |
+
def add_image(name: str, image):
|
57 |
+
path = DATASET_DIR / f"{name}.jpg"
|
58 |
+
image.save(path)
|
59 |
+
emb = get_embedding(image)
|
60 |
+
reference_embeddings[f"{name}.jpg"] = emb
|
61 |
+
with open(CACHE_FILE, "wb") as f:
|
62 |
+
pickle.dump(reference_embeddings, f)
|
63 |
+
return f"Image {name} added to dataset."
|
64 |
+
|
65 |
+
search_interface = gr.Interface(fn=search_similar,
|
66 |
+
inputs=gr.Image(type="pil", label="Query Image"),
|
67 |
+
outputs=gr.Gallery(label="Top Matches").style(grid=5),
|
68 |
+
allow_flagging="never")
|
69 |
+
|
70 |
+
add_interface = gr.Interface(fn=add_image,
|
71 |
+
inputs=[gr.Text(label="Image Name"), gr.Image(type="pil", label="Product Image")],
|
72 |
+
outputs="text",
|
73 |
+
allow_flagging="never")
|
74 |
+
|
75 |
+
demo = gr.TabbedInterface([search_interface, add_interface], tab_names=["Search", "Add Product"])
|
76 |
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio
|
4 |
+
spaces
|