Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,6 @@ from transformers import CLIPProcessor, CLIPModel
|
|
10 |
from PIL import Image
|
11 |
import torch
|
12 |
import numpy as np
|
13 |
-
from typing import Tuple
|
14 |
import spaces
|
15 |
|
16 |
# Load model/processor
|
@@ -19,7 +18,7 @@ processor: CLIPProcessor = CLIPProcessor.from_pretrained("openai/clip-vit-large-
|
|
19 |
model.eval()
|
20 |
|
21 |
@spaces.GPU
|
22 |
-
def get_embedding(image: Image.Image) ->
|
23 |
"""
|
24 |
Generate CLIP embedding for an image.
|
25 |
|
@@ -27,7 +26,7 @@ def get_embedding(image: Image.Image) -> Tuple[str, str]:
|
|
27 |
image (Image.Image): PIL Image object to process
|
28 |
|
29 |
Returns:
|
30 |
-
|
31 |
"""
|
32 |
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
33 |
|
@@ -41,36 +40,19 @@ def get_embedding(image: Image.Image) -> Tuple[str, str]:
|
|
41 |
# L2 normalize the embeddings
|
42 |
emb = emb / emb.norm(p=2, dim=-1, keepdim=True)
|
43 |
|
44 |
-
# Convert to numpy
|
45 |
emb_numpy = emb.cpu().numpy().squeeze()
|
46 |
|
47 |
-
|
48 |
-
embedding_info = f"Embedding Shape: {emb_numpy.shape}\nDevice Used: {device}\nNormalized: Yes (L2)"
|
49 |
-
|
50 |
-
# Format embedding values (show first 10 and last 10 values for readability)
|
51 |
-
if len(emb_numpy) > 20:
|
52 |
-
embedding_preview = (
|
53 |
-
f"First 10 values: {emb_numpy[:10].tolist()}\n"
|
54 |
-
f"...\n"
|
55 |
-
f"Last 10 values: {emb_numpy[-10:].tolist()}\n\n"
|
56 |
-
f"Full embedding array:\n{emb_numpy.tolist()}"
|
57 |
-
)
|
58 |
-
else:
|
59 |
-
embedding_preview = f"Full embedding array:\n{emb_numpy.tolist()}"
|
60 |
-
|
61 |
-
return embedding_info, embedding_preview
|
62 |
|
63 |
# Create Gradio interface
|
64 |
demo: gr.Interface = gr.Interface(
|
65 |
fn=get_embedding,
|
66 |
inputs=gr.Image(type="pil", label="Upload Image"),
|
67 |
-
outputs=
|
68 |
-
gr.Textbox(label="Embedding Info", lines=3),
|
69 |
-
gr.Textbox(label="Embedding Values", lines=20, max_lines=30)
|
70 |
-
],
|
71 |
allow_flagging="never",
|
72 |
title="CLIP Image Embedding Generator",
|
73 |
-
description="Upload an image to generate its CLIP embedding vector.
|
74 |
theme=gr.themes.Soft()
|
75 |
)
|
76 |
|
|
|
10 |
from PIL import Image
|
11 |
import torch
|
12 |
import numpy as np
|
|
|
13 |
import spaces
|
14 |
|
15 |
# Load model/processor
|
|
|
18 |
model.eval()
|
19 |
|
20 |
@spaces.GPU
|
21 |
+
def get_embedding(image: Image.Image) -> str:
|
22 |
"""
|
23 |
Generate CLIP embedding for an image.
|
24 |
|
|
|
26 |
image (Image.Image): PIL Image object to process
|
27 |
|
28 |
Returns:
|
29 |
+
str: The full embedding array as a string
|
30 |
"""
|
31 |
device: str = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
|
|
|
40 |
# L2 normalize the embeddings
|
41 |
emb = emb / emb.norm(p=2, dim=-1, keepdim=True)
|
42 |
|
43 |
+
# Convert to numpy and return as string
|
44 |
emb_numpy = emb.cpu().numpy().squeeze()
|
45 |
|
46 |
+
return str(emb_numpy.tolist())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
# Create Gradio interface
|
49 |
demo: gr.Interface = gr.Interface(
|
50 |
fn=get_embedding,
|
51 |
inputs=gr.Image(type="pil", label="Upload Image"),
|
52 |
+
outputs=gr.Textbox(label="Embedding", lines=20, max_lines=30),
|
|
|
|
|
|
|
53 |
allow_flagging="never",
|
54 |
title="CLIP Image Embedding Generator",
|
55 |
+
description="Upload an image to generate its CLIP embedding vector.",
|
56 |
theme=gr.themes.Soft()
|
57 |
)
|
58 |
|