Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,8 @@ import tensorflow as tf
|
|
3 |
from tensorflow.keras.models import load_model
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
|
|
|
|
6 |
|
7 |
# Load the model
|
8 |
try:
|
@@ -10,59 +12,70 @@ try:
|
|
10 |
except Exception as e:
|
11 |
raise RuntimeError(f"Error loading model: {e}")
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
14 |
input_shape = (224, 224, 3)
|
15 |
|
16 |
def preprocess_image(image, target_size):
|
|
|
|
|
|
|
17 |
"""
|
18 |
-
|
19 |
-
- Resize the image to the target size.
|
20 |
-
- Normalize pixel values to the range [0, 1].
|
21 |
"""
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def predict(image):
|
31 |
-
"""
|
32 |
-
Predict the class probabilities for the input image.
|
33 |
-
- Preprocess the image.
|
34 |
-
- Predict using the loaded model.
|
35 |
-
- Return results as a dictionary with class labels and probabilities.
|
36 |
-
"""
|
37 |
try:
|
38 |
-
#
|
39 |
-
input_data = preprocess_image(image, (input_shape[0], input_shape[1]))
|
40 |
-
input_data = np.expand_dims(input_data, axis=0) # Add batch dimension
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
with open('./classes.txt', 'r') as file:
|
45 |
-
class_labels = file.read().splitlines()
|
46 |
-
except FileNotFoundError:
|
47 |
-
raise RuntimeError("Class labels file 'classes.txt' not found.")
|
48 |
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
results = {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}
|
55 |
-
return results
|
56 |
except Exception as e:
|
57 |
return {"error": str(e)}
|
58 |
|
59 |
-
#
|
60 |
iface = gr.Interface(
|
61 |
fn=predict,
|
62 |
inputs=gr.Image(type="pil"),
|
63 |
-
outputs=
|
|
|
|
|
|
|
64 |
live=True
|
65 |
)
|
66 |
|
67 |
-
|
68 |
-
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
3 |
from tensorflow.keras.models import load_model
|
4 |
import numpy as np
|
5 |
from PIL import Image
|
6 |
+
import requests
|
7 |
+
import json
|
8 |
|
9 |
# Load the model
|
10 |
try:
|
|
|
12 |
except Exception as e:
|
13 |
raise RuntimeError(f"Error loading model: {e}")
|
14 |
|
15 |
+
# OpenRouter.ai Configuration
|
16 |
+
OPENROUTER_API_KEY = "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"
|
17 |
+
OPENROUTER_API_URL = "https://openrouter.ai/api/v1/chat/completions"
|
18 |
+
MODEL_NAME = "mistralai/mistral-small-24b-instruct-2501:free" # Mistral model via OpenRouter
|
19 |
+
|
20 |
input_shape = (224, 224, 3)
|
21 |
|
22 |
def preprocess_image(image, target_size):
|
23 |
+
# ... (keep your existing preprocessing code) ...
|
24 |
+
|
25 |
+
def get_medical_guidelines(wound_type):
|
26 |
"""
|
27 |
+
Fetch medical guidelines using OpenRouter.ai's Mistral model.
|
|
|
|
|
28 |
"""
|
29 |
+
headers = {
|
30 |
+
"Authorization": f"Bearer {OPENROUTER_API_KEY}",
|
31 |
+
"Content-Type": "application/json",
|
32 |
+
"HTTP-Referer": "https://your-huggingface-space-url.com", # Optional
|
33 |
+
"X-Title": "Wound Classifier" # Optional
|
34 |
+
}
|
35 |
+
|
36 |
+
prompt = f"""
|
37 |
+
As a medical professional, provide detailed guidelines for treating a {wound_type} wound.
|
38 |
+
Include steps for first aid, precautions, and when to seek professional help.
|
39 |
+
"""
|
40 |
+
|
41 |
+
data = {
|
42 |
+
"model": MODEL_NAME,
|
43 |
+
"messages": [{"role": "user", "content": prompt}],
|
44 |
+
"temperature": 0.7 # Adjust for creativity vs. precision
|
45 |
+
}
|
46 |
+
|
47 |
+
try:
|
48 |
+
response = requests.post(OPENROUTER_API_URL, headers=headers, json=data)
|
49 |
+
response.raise_for_status()
|
50 |
+
result = response.json()
|
51 |
+
return result["choices"][0]["message"]["content"]
|
52 |
+
except Exception as e:
|
53 |
+
return f"Error fetching guidelines: {str(e)}"
|
54 |
|
55 |
def predict(image):
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
try:
|
57 |
+
# ... (keep your existing preprocessing and prediction code) ...
|
|
|
|
|
58 |
|
59 |
+
# After getting `predicted_class`:
|
60 |
+
guidelines = get_medical_guidelines(predicted_class)
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
return {
|
63 |
+
"predictions": results, # Your existing classification results
|
64 |
+
"treatment_guidelines": guidelines # From OpenRouter.ai
|
65 |
+
}
|
66 |
+
|
|
|
|
|
67 |
except Exception as e:
|
68 |
return {"error": str(e)}
|
69 |
|
70 |
+
# Update Gradio interface to show both outputs
|
71 |
iface = gr.Interface(
|
72 |
fn=predict,
|
73 |
inputs=gr.Image(type="pil"),
|
74 |
+
outputs=[
|
75 |
+
gr.Label(num_top_classes=18, label="Classification Results"),
|
76 |
+
gr.Textbox(label="Medical Guidelines", lines=5)
|
77 |
+
],
|
78 |
live=True
|
79 |
)
|
80 |
|
81 |
+
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|