Not-a-Foreign / app.py
Mahwishsada's picture
Update app.py
c49a3c9 verified
import gradio as gr
from faster_whisper import WhisperModel
from transformers import MarianMTModel, MarianTokenizer
from TTS.api import TTS
import os
# Load Whisper for Hindi ASR
whisper_model = WhisperModel("medium", compute_type="float32", download_root="./models")
# Load Helsinki-NLP Hindi-to-English Translator
translator_name = "Helsinki-NLP/opus-mt-hi-en"
translator_tokenizer = MarianTokenizer.from_pretrained(translator_name)
translator_model = MarianMTModel.from_pretrained(translator_name)
# Load TTS model for English voice
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=True, gpu=False)
def translate_hi_to_en(text):
inputs = translator_tokenizer(text, return_tensors="pt", padding=True, truncation=True)
translated = translator_model.generate(**inputs)
return translator_tokenizer.decode(translated[0], skip_special_tokens=True)
def transcribe_and_translate(audio_path):
# Step 1: Transcribe Hindi audio
segments, _ = whisper_model.transcribe(audio_path, language="hi")
hindi_text = " ".join([segment.text for segment in segments])
# Step 2: Translate to English
english_text = translate_hi_to_en(hindi_text)
# Step 3: Convert English text to speech
output_audio_path = "output.wav"
tts.tts_to_file(text=english_text, file_path=output_audio_path)
return english_text, output_audio_path
# Gradio Interface
iface = gr.Interface(
fn=transcribe_and_translate,
inputs=gr.Audio(type="filepath", label="Speak in Hindi"),
outputs=[
gr.Textbox(label="Translated English Text"),
gr.Audio(type="filepath", label="English Speech")
],
title="Hindi to English Speech Translator",
description="🎀 Speak Hindi β†’ πŸ“˜ Translate to English β†’ πŸ”Š English Speech"
)
iface.launch()