Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,61 @@
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
-
from transformers import
|
|
|
4 |
from TTS.api import TTS
|
5 |
|
6 |
-
# Load
|
7 |
-
|
8 |
-
whisper_model = whisper.load_model("small")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
16 |
|
17 |
-
#
|
18 |
-
def
|
19 |
-
|
20 |
-
result
|
21 |
-
hindi_text = result["text"]
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
-
|
|
|
32 |
|
33 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
interface = gr.Interface(
|
35 |
-
fn=
|
36 |
-
inputs=gr.Audio(
|
37 |
outputs=[
|
38 |
-
gr.Textbox(label="
|
39 |
-
gr.
|
|
|
40 |
],
|
41 |
-
title="Hindi
|
42 |
-
description="
|
43 |
)
|
44 |
|
45 |
-
|
46 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import whisper
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
+
import torch
|
5 |
from TTS.api import TTS
|
6 |
|
7 |
+
# Load Whisper model (better accuracy with 'medium')
|
8 |
+
asr_model = whisper.load_model("medium")
|
|
|
9 |
|
10 |
+
# Load NLLB Hindi to English translator
|
11 |
+
translation_model_name = "facebook/nllb-200-distilled-600M"
|
12 |
+
translator_tokenizer = AutoTokenizer.from_pretrained(translation_model_name)
|
13 |
+
translator_model = AutoModelForSeq2SeqLM.from_pretrained(translation_model_name)
|
14 |
|
15 |
+
# Load English TTS model
|
16 |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
17 |
|
18 |
+
# Utility: Get Hindi text from audio
|
19 |
+
def speech_to_text(audio_path):
|
20 |
+
result = asr_model.transcribe(audio_path, language="hi")
|
21 |
+
return result["text"]
|
|
|
22 |
|
23 |
+
# Utility: Translate Hindi to English
|
24 |
+
def translate_hi_to_en(text_hi):
|
25 |
+
inputs = translator_tokenizer(text_hi, return_tensors="pt")
|
26 |
+
translated_tokens = translator_model.generate(**inputs, forced_bos_token_id=translator_tokenizer.lang_code_to_id["eng_Latn"])
|
27 |
+
translated_text = translator_tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
28 |
+
return translated_text
|
29 |
|
30 |
+
# Main app logic
|
31 |
+
def translate_audio(audio):
|
32 |
+
if audio is None:
|
33 |
+
return "No audio input", "", None
|
34 |
+
|
35 |
+
# Step 1: Convert Hindi speech to Hindi text
|
36 |
+
hindi_text = speech_to_text(audio)
|
37 |
|
38 |
+
# Step 2: Translate to English
|
39 |
+
english_text = translate_hi_to_en(hindi_text)
|
40 |
|
41 |
+
# Step 3: Generate English speech
|
42 |
+
english_audio_path = "output.wav"
|
43 |
+
tts.tts_to_file(text=english_text, file_path=english_audio_path)
|
44 |
+
|
45 |
+
return hindi_text, english_text, english_audio_path
|
46 |
+
|
47 |
+
# Gradio UI
|
48 |
interface = gr.Interface(
|
49 |
+
fn=translate_audio,
|
50 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
51 |
outputs=[
|
52 |
+
gr.Textbox(label="Hindi Transcript"),
|
53 |
+
gr.Textbox(label="English Translation"),
|
54 |
+
gr.Audio(label="English Speech")
|
55 |
],
|
56 |
+
title="Hindi to English Speech Translator",
|
57 |
+
description="π€ Speak in Hindi β π Translated English Text β π Spoken English Output"
|
58 |
)
|
59 |
|
60 |
+
if __name__ == "__main__":
|
61 |
+
interface.launch()
|