Spaces:
Sleeping
Sleeping
| # File havily based on https://github.com/aimagelab/dress-code/blob/main/data/dataset.py | |
| import json | |
| import os | |
| import pathlib | |
| import random | |
| import sys | |
| from typing import Tuple | |
| PROJECT_ROOT = pathlib.Path(__file__).absolute().parents[2].absolute() | |
| sys.path.insert(0, str(PROJECT_ROOT)) | |
| import numpy as np | |
| import torch | |
| import torch.utils.data as data | |
| import torchvision.transforms as transforms | |
| from PIL import Image, ImageDraw, ImageOps | |
| from torchvision.ops import masks_to_boxes | |
| from src.utils.posemap import get_coco_body25_mapping | |
| from src.utils.posemap import kpoint_to_heatmap | |
| class VitonHDDataset(data.Dataset): | |
| def __init__( | |
| self, | |
| dataroot_path: str, | |
| phase: str, | |
| tokenizer, | |
| radius=5, | |
| caption_folder='captions.json', | |
| sketch_threshold_range: Tuple[int, int] = (20, 127), | |
| order: str = 'paired', | |
| outputlist: Tuple[str] = ('c_name', 'im_name', 'image', 'im_cloth', 'shape', 'pose_map', | |
| 'parse_array', 'im_mask', 'inpaint_mask', 'parse_mask_total', | |
| 'im_sketch', 'captions', 'original_captions'), | |
| size: Tuple[int, int] = (512, 384), | |
| ): | |
| super(VitonHDDataset, self).__init__() | |
| self.dataroot = dataroot_path | |
| self.phase = phase | |
| self.caption_folder = caption_folder | |
| self.sketch_threshold_range = sketch_threshold_range | |
| self.category = ('upper_body') | |
| self.outputlist = outputlist | |
| self.height = size[0] | |
| self.width = size[1] | |
| self.radius = radius | |
| self.tokenizer = tokenizer | |
| self.transform = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) | |
| ]) | |
| self.transform2D = transforms.Compose([ | |
| transforms.ToTensor(), | |
| transforms.Normalize((0.5,), (0.5,)) | |
| ]) | |
| self.order = order | |
| im_names = [] | |
| c_names = [] | |
| dataroot_names = [] | |
| possible_outputs = ['c_name', 'im_name', 'image', 'im_cloth', 'shape', 'im_head', 'im_pose', | |
| 'pose_map', 'parse_array', | |
| 'im_mask', 'inpaint_mask', 'parse_mask_total', 'im_sketch', 'captions', | |
| 'original_captions', 'category'] | |
| assert all(x in possible_outputs for x in outputlist) | |
| # Load Captions | |
| with open(os.path.join(self.dataroot, self.caption_folder)) as f: | |
| # self.captions_dict = json.load(f)['items'] | |
| self.captions_dict = json.load(f) | |
| self.captions_dict = {k: v for k, v in self.captions_dict.items() if len(v) >= 3} | |
| dataroot = self.dataroot | |
| if phase == 'train': | |
| filename = os.path.join(dataroot, f"{phase}_pairs.txt") | |
| else: | |
| filename = os.path.join(dataroot, f"{phase}_pairs.txt") | |
| with open(filename, 'r') as f: | |
| data_len = len(f.readlines()) | |
| with open(filename, 'r') as f: | |
| for line in f.readlines(): | |
| if phase == 'train': | |
| im_name, _ = line.strip().split() | |
| c_name = im_name | |
| else: | |
| if order == 'paired': | |
| im_name, _ = line.strip().split() | |
| c_name = im_name | |
| else: | |
| im_name, c_name = line.strip().split() | |
| im_names.append(im_name) | |
| c_names.append(c_name) | |
| dataroot_names.append(dataroot) | |
| self.im_names = im_names | |
| self.c_names = c_names | |
| self.dataroot_names = dataroot_names | |
| def __getitem__(self, index): | |
| """ | |
| For each index return the corresponding sample in the dataset | |
| :param index: data index | |
| :type index: int | |
| :return: dict containing dataset samples | |
| :rtype: dict | |
| """ | |
| c_name = self.c_names[index] | |
| im_name = self.im_names[index] | |
| dataroot = self.dataroot_names[index] | |
| sketch_threshold = random.randint(self.sketch_threshold_range[0], self.sketch_threshold_range[1]) | |
| if "captions" in self.outputlist or "original_captions" in self.outputlist: | |
| captions = self.captions_dict[c_name.split('_')[0]] | |
| # take a random caption if there are multiple | |
| if self.phase == 'train': | |
| random.shuffle(captions) | |
| captions = ", ".join(captions) | |
| original_captions = captions | |
| if "captions" in self.outputlist: | |
| cond_input = self.tokenizer([captions], max_length=self.tokenizer.model_max_length, padding="max_length", | |
| truncation=True, return_tensors="pt").input_ids | |
| cond_input = cond_input.squeeze(0) | |
| max_length = cond_input.shape[-1] | |
| uncond_input = self.tokenizer( | |
| [""], padding="max_length", max_length=max_length, return_tensors="pt" | |
| ).input_ids.squeeze(0) | |
| captions = cond_input | |
| captions_uncond = uncond_input | |
| if "image" in self.outputlist or "im_head" in self.outputlist or "im_cloth" in self.outputlist: | |
| # Person image | |
| # image = Image.open(os.path.join(dataroot, 'images', im_name)) | |
| image = Image.open(os.path.join(dataroot, self.phase, 'image', im_name)) | |
| image = image.resize((self.width, self.height)) | |
| image = self.transform(image) # [-1,1] | |
| if "im_sketch" in self.outputlist: | |
| # Person image | |
| # im_sketch = Image.open(os.path.join(dataroot, 'im_sketch', c_name.replace(".jpg", ".png"))) | |
| if self.order == 'unpaired': | |
| im_sketch = Image.open( | |
| os.path.join(dataroot, self.phase, 'im_sketch_unpaired', | |
| os.path.splitext(im_name)[0] + '_' + c_name.replace(".jpg", ".png"))) | |
| elif self.order == 'paired': | |
| im_sketch = Image.open(os.path.join(dataroot, self.phase, 'im_sketch', im_name.replace(".jpg", ".png"))) | |
| else: | |
| raise ValueError( | |
| f"Order should be either paired or unpaired" | |
| ) | |
| im_sketch = im_sketch.resize((self.width, self.height)) | |
| im_sketch = ImageOps.invert(im_sketch) | |
| # threshold grayscale pil image | |
| im_sketch = im_sketch.point(lambda p: 255 if p > sketch_threshold else 0) | |
| # im_sketch = im_sketch.convert("RGB") | |
| im_sketch = transforms.functional.to_tensor(im_sketch) # [-1,1] | |
| im_sketch = 1 - im_sketch | |
| if "im_pose" in self.outputlist or "parser_mask" in self.outputlist or "im_mask" in self.outputlist or "parse_mask_total" in self.outputlist or "parse_array" in self.outputlist or "pose_map" in self.outputlist or "parse_array" in self.outputlist or "shape" in self.outputlist or "im_head" in self.outputlist: | |
| # Label Map | |
| # parse_name = im_name.replace('_0.jpg', '_4.png') | |
| parse_name = im_name.replace('.jpg', '.png') | |
| im_parse = Image.open(os.path.join(dataroot, self.phase, 'image-parse-v3', parse_name)) | |
| im_parse = im_parse.resize((self.width, self.height), Image.NEAREST) | |
| im_parse_final = transforms.ToTensor()(im_parse) * 255 | |
| parse_array = np.array(im_parse) | |
| parse_shape = (parse_array > 0).astype(np.float32) | |
| parse_head = (parse_array == 1).astype(np.float32) + \ | |
| (parse_array == 2).astype(np.float32) + \ | |
| (parse_array == 4).astype(np.float32) + \ | |
| (parse_array == 13).astype(np.float32) | |
| parser_mask_fixed = (parse_array == 1).astype(np.float32) + \ | |
| (parse_array == 2).astype(np.float32) + \ | |
| (parse_array == 18).astype(np.float32) + \ | |
| (parse_array == 19).astype(np.float32) | |
| # parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32) | |
| parser_mask_changeable = (parse_array == 0).astype(np.float32) | |
| arms = (parse_array == 14).astype(np.float32) + (parse_array == 15).astype(np.float32) | |
| parse_cloth = (parse_array == 5).astype(np.float32) + \ | |
| (parse_array == 6).astype(np.float32) + \ | |
| (parse_array == 7).astype(np.float32) | |
| parse_mask = (parse_array == 5).astype(np.float32) + \ | |
| (parse_array == 6).astype(np.float32) + \ | |
| (parse_array == 7).astype(np.float32) | |
| parser_mask_fixed = parser_mask_fixed + (parse_array == 9).astype(np.float32) + \ | |
| (parse_array == 12).astype(np.float32) # the lower body is fixed | |
| parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed)) | |
| parse_head = torch.from_numpy(parse_head) # [0,1] | |
| parse_cloth = torch.from_numpy(parse_cloth) # [0,1] | |
| parse_mask = torch.from_numpy(parse_mask) # [0,1] | |
| parser_mask_fixed = torch.from_numpy(parser_mask_fixed) | |
| parser_mask_changeable = torch.from_numpy(parser_mask_changeable) | |
| # dilation | |
| parse_without_cloth = np.logical_and(parse_shape, np.logical_not(parse_mask)) | |
| parse_mask = parse_mask.cpu().numpy() | |
| if "im_head" in self.outputlist: | |
| # Masked cloth | |
| im_head = image * parse_head - (1 - parse_head) | |
| if "im_cloth" in self.outputlist: | |
| im_cloth = image * parse_cloth + (1 - parse_cloth) | |
| # Shape | |
| parse_shape = Image.fromarray((parse_shape * 255).astype(np.uint8)) | |
| parse_shape = parse_shape.resize((self.width // 16, self.height // 16), Image.BILINEAR) | |
| parse_shape = parse_shape.resize((self.width, self.height), Image.BILINEAR) | |
| shape = self.transform2D(parse_shape) # [-1,1] | |
| # Load pose points | |
| pose_name = im_name.replace('.jpg', '_keypoints.json') | |
| with open(os.path.join(dataroot, self.phase, 'openpose_json', pose_name), 'r') as f: | |
| pose_label = json.load(f) | |
| pose_data = pose_label['people'][0]['pose_keypoints_2d'] | |
| pose_data = np.array(pose_data) | |
| pose_data = pose_data.reshape((-1, 3))[:, :2] | |
| # rescale keypoints on the base of height and width | |
| pose_data[:, 0] = pose_data[:, 0] * (self.width / 768) | |
| pose_data[:, 1] = pose_data[:, 1] * (self.height / 1024) | |
| pose_mapping = get_coco_body25_mapping() | |
| point_num = len(pose_mapping) | |
| pose_map = torch.zeros(point_num, self.height, self.width) | |
| r = self.radius * (self.height / 512.0) | |
| im_pose = Image.new('L', (self.width, self.height)) | |
| pose_draw = ImageDraw.Draw(im_pose) | |
| neck = Image.new('L', (self.width, self.height)) | |
| neck_draw = ImageDraw.Draw(neck) | |
| for i in range(point_num): | |
| one_map = Image.new('L', (self.width, self.height)) | |
| draw = ImageDraw.Draw(one_map) | |
| point_x = np.multiply(pose_data[pose_mapping[i], 0], 1) | |
| point_y = np.multiply(pose_data[pose_mapping[i], 1], 1) | |
| if point_x > 1 and point_y > 1: | |
| draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white') | |
| pose_draw.rectangle((point_x - r, point_y - r, point_x + r, point_y + r), 'white', 'white') | |
| if i == 2 or i == 5: | |
| neck_draw.ellipse((point_x - r * 4, point_y - r * 4, point_x + r * 4, point_y + r * 4), 'white', | |
| 'white') | |
| one_map = self.transform2D(one_map) | |
| pose_map[i] = one_map[0] | |
| d = [] | |
| for idx in range(point_num): | |
| ux = pose_data[pose_mapping[idx], 0] # / (192) | |
| uy = (pose_data[pose_mapping[idx], 1]) # / (256) | |
| # scale posemap points | |
| px = ux # * self.width | |
| py = uy # * self.height | |
| d.append(kpoint_to_heatmap(np.array([px, py]), (self.height, self.width), 9)) | |
| pose_map = torch.stack(d) | |
| # just for visualization | |
| im_pose = self.transform2D(im_pose) | |
| im_arms = Image.new('L', (self.width, self.height)) | |
| arms_draw = ImageDraw.Draw(im_arms) | |
| # do in any case because i have only upperbody | |
| with open(os.path.join(dataroot, self.phase, 'openpose_json', pose_name), 'r') as f: | |
| data = json.load(f) | |
| data = data['people'][0]['pose_keypoints_2d'] | |
| data = np.array(data) | |
| data = data.reshape((-1, 3))[:, :2] | |
| # rescale keypoints on the base of height and width | |
| data[:, 0] = data[:, 0] * (self.width / 768) | |
| data[:, 1] = data[:, 1] * (self.height / 1024) | |
| shoulder_right = np.multiply(tuple(data[pose_mapping[2]]), 1) | |
| shoulder_left = np.multiply(tuple(data[pose_mapping[5]]), 1) | |
| elbow_right = np.multiply(tuple(data[pose_mapping[3]]), 1) | |
| elbow_left = np.multiply(tuple(data[pose_mapping[6]]), 1) | |
| wrist_right = np.multiply(tuple(data[pose_mapping[4]]), 1) | |
| wrist_left = np.multiply(tuple(data[pose_mapping[7]]), 1) | |
| ARM_LINE_WIDTH = int(90 / 512 * self.height) | |
| if wrist_right[0] <= 1. and wrist_right[1] <= 1.: | |
| if elbow_right[0] <= 1. and elbow_right[1] <= 1.: | |
| arms_draw.line( | |
| np.concatenate((wrist_left, elbow_left, shoulder_left, shoulder_right)).astype( | |
| np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') | |
| else: | |
| arms_draw.line(np.concatenate( | |
| (wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right)).astype( | |
| np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') | |
| elif wrist_left[0] <= 1. and wrist_left[1] <= 1.: | |
| if elbow_left[0] <= 1. and elbow_left[1] <= 1.: | |
| arms_draw.line( | |
| np.concatenate((shoulder_left, shoulder_right, elbow_right, wrist_right)).astype( | |
| np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') | |
| else: | |
| arms_draw.line(np.concatenate( | |
| (elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right)).astype( | |
| np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') | |
| else: | |
| arms_draw.line(np.concatenate( | |
| (wrist_left, elbow_left, shoulder_left, shoulder_right, elbow_right, wrist_right)).astype( | |
| np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve') | |
| hands = np.logical_and(np.logical_not(im_arms), arms) | |
| parse_mask += im_arms | |
| parser_mask_fixed += hands | |
| # delete neck | |
| parse_head_2 = torch.clone(parse_head) | |
| parser_mask_fixed = np.logical_or(parser_mask_fixed, np.array(parse_head_2, dtype=np.uint16)) | |
| parse_mask += np.logical_or(parse_mask, np.logical_and(np.array(parse_head, dtype=np.uint16), | |
| np.logical_not( | |
| np.array(parse_head_2, dtype=np.uint16)))) | |
| parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask)) | |
| parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed) | |
| # im_mask = image * parse_mask_total | |
| inpaint_mask = 1 - parse_mask_total | |
| # here we have to modify the mask and get the bounding box | |
| bboxes = masks_to_boxes(inpaint_mask.unsqueeze(0)) | |
| bboxes = bboxes.type(torch.int32) # xmin, ymin, xmax, ymax format | |
| xmin = bboxes[0, 0] | |
| xmax = bboxes[0, 2] | |
| ymin = bboxes[0, 1] | |
| ymax = bboxes[0, 3] | |
| inpaint_mask[ymin:ymax + 1, xmin:xmax + 1] = torch.logical_and( | |
| torch.ones_like(inpaint_mask[ymin:ymax + 1, xmin:xmax + 1]), | |
| torch.logical_not(parser_mask_fixed[ymin:ymax + 1, xmin:xmax + 1])) | |
| inpaint_mask = inpaint_mask.unsqueeze(0) | |
| im_mask = image * np.logical_not(inpaint_mask.repeat(3, 1, 1)) | |
| parse_mask_total = parse_mask_total.numpy() | |
| parse_mask_total = parse_array * parse_mask_total | |
| parse_mask_total = torch.from_numpy(parse_mask_total) | |
| result = {} | |
| for k in self.outputlist: | |
| result[k] = vars()[k] | |
| result['im_parse'] = im_parse_final | |
| result['hands'] = torch.from_numpy(hands) | |
| # Output interpretation | |
| # "c_name" -> filename of inshop cloth | |
| # "im_name" -> filename of model with cloth | |
| # "cloth" -> img of inshop cloth | |
| # "image" -> img of the model with that cloth | |
| # "im_cloth" -> cut cloth from the model | |
| # "im_mask" -> black mask of the cloth in the model img | |
| # "cloth_sketch" -> sketch of the inshop cloth | |
| # "im_sketch" -> sketch of "im_cloth" | |
| # inpaint_mask -> bb of the model img where the cloth is | |
| # ... | |
| return result | |
| def __len__(self): | |
| return len(self.c_names) | |