Spaces:
Sleeping
Sleeping
| import spaces | |
| import argparse | |
| import os | |
| import time | |
| from os import path | |
| from safetensors.torch import load_file | |
| from huggingface_hub import hf_hub_download | |
| cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
| os.environ["TRANSFORMERS_CACHE"] = cache_path | |
| os.environ["HF_HUB_CACHE"] = cache_path | |
| os.environ["HF_HOME"] = cache_path | |
| import gradio as gr | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline, LCMScheduler | |
| # from scheduling_tcd import TCDScheduler | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| class timer: | |
| def __init__(self, method_name="timed process"): | |
| self.method = method_name | |
| def __enter__(self): | |
| self.start = time.time() | |
| print(f"{self.method} starts") | |
| def __exit__(self, exc_type, exc_val, exc_tb): | |
| end = time.time() | |
| print(f"{self.method} took {str(round(end - self.start, 2))}s") | |
| if not path.exists(cache_path): | |
| os.makedirs(cache_path, exist_ok=True) | |
| pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.bfloat16) | |
| pipe.to(device="cuda", dtype=torch.bfloat16) | |
| unet_state = load_file(hf_hub_download("ByteDance/Hyper-SD", "Hyper-SDXL-1step-Unet.safetensors"), device="cuda") | |
| pipe.unet.load_state_dict(unet_state) | |
| pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, timestep_spacing ="trailing") | |
| with gr.Blocks() as demo: | |
| gr.Markdown(DESCRIPTION) | |
| with gr.Row(equal_height=False): | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Gallery(label="Result", columns=NUM_IMAGES_PER_PROMPT, show_label=False) | |
| with gr.Accordion("Advanced options", open=False): | |
| with gr.Group(): | |
| with gr.Row(): | |
| with seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=99999999, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(visible=True): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=8192, | |
| step=32, | |
| value=2048, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=8192, | |
| step=32, | |
| value=2048, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=[result, seed], | |
| fn=generate, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, 99999999) | |
| return seed | |
| def process_image( height, width, prompt, seed, randomize_seed): | |
| global pipe | |
| with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16), timer("inference"): | |
| return pipe( | |
| prompt=str,, | |
| num_inference_steps=1, | |
| guidance_scale=0., | |
| height=int(height), | |
| width=int(width), | |
| timesteps=[800], | |
| randomize_seed: bool = False, | |
| use_resolution_binning: bool = True, | |
| progress=gr.Progress(track_tqdm=True), | |
| ).images | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| generator = torch.Generator().manual_seed(seed) | |
| reactive_controls = [ height, width, prompt, seed, randomize_seed] | |
| btn.click(process_image, inputs=reactive_controls, outputs=[output]) | |
| if __name__ == "__main__": | |
| demo.launch() | |
| DESCRIPTION = """ # Instant Image | |
| ### Super fast text to Image Generator. | |
| ### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results. | |
| ### First Image processing takes time then images generate faster. | |
| """ | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" | |
| CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1" | |
| examples = [ | |
| "A Monkey with a happy face in the Sahara desert.", | |
| "Eiffel Tower was Made up of ICE.", | |
| "Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.", | |
| "A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.", | |
| "A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.", | |
| "an astronaut sitting in a diner, eating fries, cinematic, analog film", | |
| ] | |