Spaces:
Sleeping
Sleeping
Update sentiment_api.py
Browse files- sentiment_api.py +38 -34
sentiment_api.py
CHANGED
@@ -1,34 +1,38 @@
|
|
1 |
-
from fastapi import FastAPI, Request
|
2 |
-
from pydantic import BaseModel
|
3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
-
import torch
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Set a custom cache directory
|
8 |
+
os.environ["TRANSFORMERS_CACHE"] = "./hf_cache"
|
9 |
+
|
10 |
+
# Load model and tokenizer once at startup
|
11 |
+
model_name = "tabularisai/multilingual-sentiment-analysis"
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
14 |
+
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
# Sentiment map
|
18 |
+
sentiment_map = {
|
19 |
+
0: "Very Negative",
|
20 |
+
1: "Negative",
|
21 |
+
2: "Neutral",
|
22 |
+
3: "Positive",
|
23 |
+
4: "Very Positive"
|
24 |
+
}
|
25 |
+
|
26 |
+
# Request body schema
|
27 |
+
class ReviewRequest(BaseModel):
|
28 |
+
text: str
|
29 |
+
|
30 |
+
@app.post("/predict-sentiment")
|
31 |
+
def predict_sentiment(review: ReviewRequest):
|
32 |
+
inputs = tokenizer(review.text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(**inputs)
|
35 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
36 |
+
predicted_label = torch.argmax(probabilities, dim=-1).item()
|
37 |
+
sentiment = sentiment_map[predicted_label]
|
38 |
+
return {"text": review.text, "sentiment": sentiment}
|