Spaces:
Sleeping
Sleeping
File size: 7,613 Bytes
d8a8160 33169c1 d8a8160 33169c1 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 8a66b29 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 8a66b29 9675d25 d8a8160 9675d25 d8a8160 9675d25 d8a8160 9675d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain_community.embeddings import HuggingFaceEmbeddings
# from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.prompts import PromptTemplate
# from langchain_ollama import OllamaLLM
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from dotenv import load_dotenv
import threading
from datetime import datetime
from langchain.schema import HumanMessage, AIMessage
from langchain_google_genai import GoogleGenerativeAIEmbeddings
# Load environment variables
load_dotenv()
# Configure API keys from environment variables
google_api_key = os.getenv("GOOGLE_API_KEY")
pinecone_api_key = os.getenv("PINECONE_API_KEY")
if not google_api_key or not pinecone_api_key:
raise ValueError("Missing required API keys in environment variables")
os.environ["GOOGLE_API_KEY"] = google_api_key
os.environ["PINECONE_API_KEY"] = pinecone_api_key
genai.configure(api_key=google_api_key)
#lấy model chatbot
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-8b-latest",
temperature=0.8)
# model = OllamaLLM(model="llama2")
# print("Llama2 đã được tải thành công!")
#lấy model embedding
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
# Biến lưu history cho từng user (dạng chuỗi)
user_histories = {}
history_lock = threading.Lock()
# Create a prompt template with conversation history
prompt = PromptTemplate(
template = """Goal:
You are a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam.
You can provide details on restaurants, cafes, hotels, attractions, and other local venues. You have to chat with users, who are Da Nang tourists.
Return Format:
- Respond in clear, natural, and concise English.
- If you do not have enough information to answer user's question, reply with "I don't know", and explain that you are not sure about the information.
- When sufficient information is available in the Context, provide a specific and informative answer.
- Let's support users like a real tour guide, not a bot. The information in context is your own knowledge.
- You just care about time that user mention when they ask about Solana event.
Warning:
- Your knowledge is provided in the Context. All of information in Context is about Da Nang, Vietnam.
- Do not fabricate or guess information.
- Answer with "I don't know" if you don't have enough information.
Context:
{context}
Conversation History:
{chat_history}
User question:
{question}
Your answer:
""",
input_variables = ["context", "question", "chat_history"],
)
def get_history(user_id):
"""Get conversation history for a specific user"""
with history_lock:
return user_histories.get(user_id, "")
def update_history(user_id, new_entry):
"""Update conversation history for a user.
new_entry should be a string containing the new conversation information, e.g.:
"User: {question}\nBot: {answer}\n"
"""
with history_lock:
current_history = user_histories.get(user_id, "")
# Store only the last 30 interactions by keeping the 60 most recent lines
# (assuming 2 lines per interaction: 1 for user, 1 for bot)
history_lines = current_history.split('\n')
if len(history_lines) > 60:
history_lines = history_lines[-60:]
current_history = '\n'.join(history_lines)
updated_history = current_history + new_entry + "\n"
user_histories[user_id] = updated_history
def string_to_message_history(history_str):
"""Convert string-based history to LangChain message history format"""
if not history_str.strip():
return []
messages = []
lines = history_str.strip().split('\n')
i = 0
while i < len(lines):
line = lines[i].strip()
if line.startswith("User:"):
user_message = line[5:].strip() # Get the user message without "User:"
messages.append(HumanMessage(content=user_message))
# Look for a Bot response (should be the next line)
if i + 1 < len(lines) and lines[i + 1].strip().startswith("Bot:"):
bot_response = lines[i + 1][4:].strip() # Get bot response without "Bot:"
messages.append(AIMessage(content=bot_response))
i += 2 # Skip the bot line too
else:
i += 1
else:
i += 1 # Skip any unexpected format lines
return messages
def get_chain():
"""Get the retrieval chain with Pinecone vector store"""
try:
pc = Pinecone(
api_key=os.environ["PINECONE_API_KEY"]
)
# Get the vector store from the existing index
vectorstore = PineconeVectorStore.from_existing_index(
index_name="testbot768",
embedding=embeddings,
text_key="text"
)
retrieve = vectorstore.as_retriever(search_kwargs={"k": 3})
return retrieve
except Exception as e:
print(f"Error getting vector store: {e}")
return None
def chat(request, user_id="default_user"):
"""Process a chat request from a specific user"""
try:
# Get retrieval chain
retriever = get_chain()
if not retriever:
return "Error: Could not initialize retriever"
# Get current conversation history as string
conversation_history_str = get_history(user_id)
# Convert string history to LangChain message format
message_history = string_to_message_history(conversation_history_str)
# Get current time
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
# Add timestamp to question
question_with_time = f"{request}\n(Current time: {current_time})"
# print("User question:", question_with_time)
# Create a ConversationalRetrievalChain
# Get relevant documents from retriever
retrieved_docs = retriever.get_relevant_documents(question_with_time)
print("Retrieved documents page content:", [doc.page_content for doc in retrieved_docs])
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=model,
retriever=retriever,
combine_docs_chain_kwargs={"prompt": prompt}
)
# Call the chain with question and converted message history
response = conversation_chain({"question": question_with_time, "chat_history": message_history})
answer = str(response['answer'])
# Update conversation history string
new_entry = f"User: {question_with_time}\nBot: {answer}"
update_history(user_id, new_entry)
print(get_history(user_id))
print(answer)
return answer
except Exception as e:
print(f"Error in chat: {e}")
return f"I encountered an error: {str(e)}"
def clear_memory(user_id="default_user"):
"""Clear the conversation history for a specific user"""
with history_lock:
if user_id in user_histories:
del user_histories[user_id]
return f"Conversation history cleared for user {user_id}"
return f"No conversation history found for user {user_id}" |