MVPchatbot / NLP_model /chatbot.py
ManTea's picture
First demo with no history memory db and curent time
8a66b29
raw
history blame
10.9 kB
import os
import google.generativeai as genai
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.prompts import PromptTemplate
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from dotenv import load_dotenv
import threading
from datetime import datetime
import time
from langchain.schema import HumanMessage, AIMessage
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import functools
import hashlib
import logging
import random
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
)
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
# Configure API keys from environment variables
google_api_key = os.getenv("GOOGLE_API_KEY")
pinecone_api_key = os.getenv("PINECONE_API_KEY")
if not google_api_key or not pinecone_api_key:
raise ValueError("Missing required API keys in environment variables")
os.environ["GOOGLE_API_KEY"] = google_api_key
os.environ["PINECONE_API_KEY"] = pinecone_api_key
genai.configure(api_key=google_api_key)
# Lấy model chatbot
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-8b-latest",
temperature=0.8)
# Lấy model embedding
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
# Biến lưu history cho từng user (dạng chuỗi)
user_histories = {}
history_lock = threading.Lock()
# Cache for responses
response_cache = {}
cache_lock = threading.Lock()
# Maximum cache size và thời gian sống (30 phút)
MAX_CACHE_SIZE = 100
CACHE_TTL = 1800 # 30 phút tính bằng giây
# Create a prompt template with conversation history
prompt = PromptTemplate(
template = """Goal:
You are a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam.
You can provide details on restaurants, cafes, hotels, attractions, and other local venues. You have to chat with users, who are Da Nang tourists.
Return Format:
Respond in friendly, natural, and concise English like a real tour guide.
Warning:
Let's support users like a real tour guide, not a bot. The information in context is your own knowledge.
Your knowledge is provided in the Context. All of information in Context is about Da Nang, Vietnam.
You just care about current time that user mention when user ask about Solana event.
If you do not have enough information to answer user's question, reply with "I don't know. I don't have information about that".
Context:
{context}
Conversation History:
{chat_history}
User question:
{question}
Your answer:
""",
input_variables = ["context", "question", "chat_history"],
)
def get_history(user_id):
"""Get conversation history for a specific user"""
with history_lock:
return user_histories.get(user_id, "")
def update_history(user_id, new_entry):
"""Update conversation history for a user.
new_entry should be a string containing the new conversation information, e.g.:
"User: {question}\nBot: {answer}\n"
"""
with history_lock:
current_history = user_histories.get(user_id, "")
# Store only the last 30 interactions by keeping the 60 most recent lines
# (assuming 2 lines per interaction: 1 for user, 1 for bot)
history_lines = current_history.split('\n')
if len(history_lines) > 20:
history_lines = history_lines[-20:]
current_history = '\n'.join(history_lines)
updated_history = current_history + new_entry + "\n"
user_histories[user_id] = updated_history
def string_to_message_history(history_str):
"""Convert string-based history to LangChain message history format"""
if not history_str.strip():
return []
messages = []
lines = history_str.strip().split('\n')
i = 0
while i < len(lines):
line = lines[i].strip()
if line.startswith("User:"):
user_message = line[5:].strip() # Get the user message without "User:"
messages.append(HumanMessage(content=user_message))
# Look for a Bot response (should be the next line)
if i + 1 < len(lines) and lines[i + 1].strip().startswith("Bot:"):
bot_response = lines[i + 1][4:].strip() # Get bot response without "Bot:"
messages.append(AIMessage(content=bot_response))
i += 2 # Skip the bot line too
else:
i += 1
else:
i += 1 # Skip any unexpected format lines
return messages
# Singleton pattern để chỉ khởi tạo retriever một lần
_retriever_instance = None
_retriever_lock = threading.Lock()
def get_chain():
"""Get the retrieval chain with Pinecone vector store (singleton pattern)"""
global _retriever_instance
# Nếu đã có instance, trả về ngay
if _retriever_instance is not None:
return _retriever_instance
# Thread-safe khởi tạo
with _retriever_lock:
# Kiểm tra lại trong trường hợp một thread khác đã khởi tạo
if _retriever_instance is not None:
return _retriever_instance
try:
start_time = time.time()
pc = Pinecone(
api_key=os.environ["PINECONE_API_KEY"]
)
# Get the vector store from the existing index
vectorstore = PineconeVectorStore.from_existing_index(
index_name="testbot768",
embedding=embeddings,
text_key="text"
)
_retriever_instance = vectorstore.as_retriever(search_kwargs={"k": 3})
logger.info(f"Pinecone retriever initialized in {time.time() - start_time:.2f} seconds")
return _retriever_instance
except Exception as e:
logger.error(f"Error getting vector store from Pinecone: {e}")
# Fallback to a local vector store or return None
try:
# Try to load a local FAISS index if it exists
start_time = time.time()
vectorstore = FAISS.load_local("faiss_index", embeddings)
_retriever_instance = vectorstore.as_retriever(search_kwargs={"k": 3})
logger.info(f"FAISS retriever initialized in {time.time() - start_time:.2f} seconds")
return _retriever_instance
except Exception as faiss_error:
logger.error(f"Error getting FAISS vector store: {faiss_error}")
return None
def clean_cache():
"""Clean expired cache entries"""
with cache_lock:
current_time = time.time()
expired_keys = [k for k, v in response_cache.items() if current_time - v['timestamp'] > CACHE_TTL]
for key in expired_keys:
del response_cache[key]
# Nếu cache vẫn quá lớn, xóa các mục cũ nhất
if len(response_cache) > MAX_CACHE_SIZE:
# Sắp xếp theo thời gian và giữ lại MAX_CACHE_SIZE mục mới nhất
sorted_items = sorted(response_cache.items(), key=lambda x: x[1]['timestamp'])
items_to_remove = sorted_items[:len(sorted_items) - MAX_CACHE_SIZE]
for key, _ in items_to_remove:
del response_cache[key]
def generate_cache_key(request, user_id):
"""Generate a unique cache key from the request and user_id"""
# Tạo một chuỗi kết hợp để hash
combined = f"{request.strip().lower()}:{user_id}"
# Tạo MD5 hash
return hashlib.md5(combined.encode()).hexdigest()
def chat(request, user_id="default_user"):
"""Process a chat request from a specific user"""
start_time = time.time()
# Định kỳ xóa các mục cache hết hạn
if random.random() < 0.1: # 10% cơ hội mỗi lần gọi
clean_cache()
# Tạo cache key
cache_key = generate_cache_key(request, user_id)
# Kiểm tra cache
with cache_lock:
if cache_key in response_cache:
cache_data = response_cache[cache_key]
# Kiểm tra thời gian sống
if time.time() - cache_data['timestamp'] <= CACHE_TTL:
logger.info(f"Cache hit for user {user_id}, request: '{request[:30]}...'")
# Cập nhật timestamp để reset TTL
cache_data['timestamp'] = time.time()
# Vẫn cập nhật lịch sử trò chuyện
new_entry = f"User: {request}\nBot: {cache_data['response']}"
update_history(user_id, new_entry)
return cache_data['response']
try:
retriever = get_chain()
if not retriever:
return "Error: Could not initialize retriever"
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
retrieved_docs = retriever.get_relevant_documents(request)
context = "\n".join([doc.page_content for doc in retrieved_docs])
# context = context + "\n(Current time: " + current_time + ")"
# print("Context:", context)
# print(prompt.format(
# context=context,
# question=request,
# chat_history=get_history(user_id)
# ))
response = model.invoke(
prompt.format(
context=context,
question=request,
chat_history=get_history(user_id)
)
)
answer = str(response.content)
new_entry = f"User: {request}\nBot: {answer}"
update_history(user_id, new_entry)
# print(get_history(user_id))
# Lưu vào cache
with cache_lock:
response_cache[cache_key] = {
'response': answer,
'timestamp': time.time()
}
logger.info(f"Total processing time: {time.time() - start_time:.2f} seconds")
return answer
except Exception as e:
logger.error(f"Error in chat: {e}")
return f"I don't know how to answer that right now. Let me forward this to the admin team."
def clear_memory(user_id="default_user"):
"""Clear the conversation history for a specific user"""
with history_lock:
if user_id in user_histories:
del user_histories[user_id]
return f"Conversation history cleared for user {user_id}"
return f"No conversation history found for user {user_id}"