Spaces:
Sleeping
Sleeping
fix connect mongodb
Browse files- NLP_model/chatbot.py +155 -108
NLP_model/chatbot.py
CHANGED
@@ -1,19 +1,32 @@
|
|
1 |
import os
|
2 |
import google.generativeai as genai
|
3 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
4 |
-
|
5 |
-
|
6 |
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
from langchain.prompts import PromptTemplate
|
9 |
-
# from langchain_ollama import OllamaLLM
|
10 |
from pinecone import Pinecone, ServerlessSpec
|
11 |
from langchain_pinecone import PineconeVectorStore
|
12 |
from dotenv import load_dotenv
|
13 |
import threading
|
14 |
from datetime import datetime
|
|
|
15 |
from langchain.schema import HumanMessage, AIMessage
|
16 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
# Load environment variables
|
18 |
load_dotenv()
|
19 |
|
@@ -29,19 +42,64 @@ os.environ["PINECONE_API_KEY"] = pinecone_api_key
|
|
29 |
|
30 |
genai.configure(api_key=google_api_key)
|
31 |
|
32 |
-
#
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
#
|
39 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
45 |
|
46 |
# Create a prompt template with conversation history
|
47 |
prompt = PromptTemplate(
|
@@ -53,77 +111,34 @@ Return Format:
|
|
53 |
Respond in friendly, natural, and concise English like a real tour guide.
|
54 |
|
55 |
Warning:
|
56 |
-
Let's support users like a real tour guide, not a bot. The information in
|
57 |
-
Your knowledge is provided in the
|
58 |
You just care about current time that user mention when user ask about Solana event.
|
59 |
If you do not have enough information to answer user's question, reply with "I don't know. I don't have information about that".
|
60 |
|
61 |
-
|
62 |
{context}
|
63 |
|
64 |
Conversation History:
|
65 |
{chat_history}
|
66 |
|
67 |
-
User
|
68 |
{question}
|
69 |
|
70 |
-
Your
|
71 |
""",
|
72 |
input_variables = ["context", "question", "chat_history"],
|
73 |
)
|
74 |
|
75 |
def get_history(user_id):
|
76 |
-
"""Get conversation history for a specific user"""
|
77 |
-
|
78 |
-
return user_histories.get(user_id, "")
|
79 |
-
|
80 |
-
def update_history(user_id, new_entry):
|
81 |
-
"""Update conversation history for a user.
|
82 |
-
new_entry should be a string containing the new conversation information, e.g.:
|
83 |
-
"User: {question}\nBot: {answer}\n"
|
84 |
-
"""
|
85 |
-
with history_lock:
|
86 |
-
current_history = user_histories.get(user_id, "")
|
87 |
-
# Store only the last 30 interactions by keeping the 60 most recent lines
|
88 |
-
# (assuming 2 lines per interaction: 1 for user, 1 for bot)
|
89 |
-
history_lines = current_history.split('\n')
|
90 |
-
if len(history_lines) > 60:
|
91 |
-
history_lines = history_lines[-60:]
|
92 |
-
current_history = '\n'.join(history_lines)
|
93 |
-
|
94 |
-
updated_history = current_history + new_entry + "\n"
|
95 |
-
user_histories[user_id] = updated_history
|
96 |
|
97 |
-
def string_to_message_history(history_str):
|
98 |
-
"""Convert string-based history to LangChain message history format"""
|
99 |
-
if not history_str.strip():
|
100 |
-
return []
|
101 |
-
|
102 |
-
messages = []
|
103 |
-
lines = history_str.strip().split('\n')
|
104 |
-
i = 0
|
105 |
-
|
106 |
-
while i < len(lines):
|
107 |
-
line = lines[i].strip()
|
108 |
-
if line.startswith("User:"):
|
109 |
-
user_message = line[5:].strip() # Get the user message without "User:"
|
110 |
-
messages.append(HumanMessage(content=user_message))
|
111 |
-
|
112 |
-
# Look for a Bot response (should be the next line)
|
113 |
-
if i + 1 < len(lines) and lines[i + 1].strip().startswith("Bot:"):
|
114 |
-
bot_response = lines[i + 1][4:].strip() # Get bot response without "Bot:"
|
115 |
-
messages.append(AIMessage(content=bot_response))
|
116 |
-
i += 2 # Skip the bot line too
|
117 |
-
else:
|
118 |
-
i += 1
|
119 |
-
else:
|
120 |
-
i += 1 # Skip any unexpected format lines
|
121 |
-
|
122 |
-
return messages
|
123 |
|
124 |
def get_chain():
|
125 |
-
"""Get the retrieval chain with Pinecone vector store"""
|
126 |
try:
|
|
|
127 |
pc = Pinecone(
|
128 |
api_key=os.environ["PINECONE_API_KEY"]
|
129 |
)
|
@@ -135,64 +150,96 @@ def get_chain():
|
|
135 |
text_key="text"
|
136 |
)
|
137 |
|
138 |
-
|
139 |
-
|
140 |
-
return
|
141 |
except Exception as e:
|
142 |
-
|
143 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
def chat(request, user_id="default_user"):
|
146 |
"""Process a chat request from a specific user"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
try:
|
148 |
-
# Get retrieval chain
|
149 |
retriever = get_chain()
|
150 |
if not retriever:
|
151 |
return "Error: Could not initialize retriever"
|
152 |
|
153 |
-
# Get current conversation history as string
|
154 |
-
conversation_history_str = get_history(user_id)
|
155 |
-
|
156 |
-
# Convert string history to LangChain message format
|
157 |
-
message_history = string_to_message_history(conversation_history_str)
|
158 |
-
|
159 |
-
# Get current time
|
160 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
161 |
|
162 |
-
#
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
# Create a ConversationalRetrievalChain
|
167 |
-
# Get relevant documents from retriever
|
168 |
-
retrieved_docs = retriever.get_relevant_documents(question_with_time)
|
169 |
-
print("Retrieved documents page content:", [doc.page_content for doc in retrieved_docs])
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
|
|
175 |
)
|
|
|
176 |
|
177 |
-
|
178 |
-
|
179 |
-
answer = str(response['answer'])
|
180 |
|
181 |
-
#
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
185 |
|
186 |
-
|
187 |
return answer
|
188 |
except Exception as e:
|
189 |
-
|
190 |
-
return f"I
|
191 |
-
|
192 |
-
def clear_memory(user_id="default_user"):
|
193 |
-
"""Clear the conversation history for a specific user"""
|
194 |
-
with history_lock:
|
195 |
-
if user_id in user_histories:
|
196 |
-
del user_histories[user_id]
|
197 |
-
return f"Conversation history cleared for user {user_id}"
|
198 |
-
return f"No conversation history found for user {user_id}"
|
|
|
1 |
import os
|
2 |
import google.generativeai as genai
|
3 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
from langchain.chains import RetrievalQA, ConversationalRetrievalChain
|
7 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
from langchain.prompts import PromptTemplate
|
|
|
9 |
from pinecone import Pinecone, ServerlessSpec
|
10 |
from langchain_pinecone import PineconeVectorStore
|
11 |
from dotenv import load_dotenv
|
12 |
import threading
|
13 |
from datetime import datetime
|
14 |
+
import time
|
15 |
from langchain.schema import HumanMessage, AIMessage
|
16 |
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
17 |
+
import functools
|
18 |
+
import hashlib
|
19 |
+
import logging
|
20 |
+
import random
|
21 |
+
from mongodb import get_chat_history
|
22 |
+
|
23 |
+
# Configure logging
|
24 |
+
logging.basicConfig(
|
25 |
+
level=logging.INFO,
|
26 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
27 |
+
)
|
28 |
+
logger = logging.getLogger(__name__)
|
29 |
+
|
30 |
# Load environment variables
|
31 |
load_dotenv()
|
32 |
|
|
|
42 |
|
43 |
genai.configure(api_key=google_api_key)
|
44 |
|
45 |
+
# Lấy model chatbot
|
46 |
+
try:
|
47 |
+
generation_config = {
|
48 |
+
"temperature": 0.9,
|
49 |
+
"top_p": 1,
|
50 |
+
"top_k": 1,
|
51 |
+
"max_output_tokens": 2048,
|
52 |
+
}
|
53 |
+
|
54 |
+
safety_settings = [
|
55 |
+
{
|
56 |
+
"category": "HARM_CATEGORY_HARASSMENT",
|
57 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"category": "HARM_CATEGORY_HATE_SPEECH",
|
61 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
62 |
+
},
|
63 |
+
{
|
64 |
+
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
65 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
69 |
+
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
|
70 |
+
},
|
71 |
+
]
|
72 |
+
|
73 |
+
model = genai.GenerativeModel(
|
74 |
+
model_name='models/gemini-2.0-flash',
|
75 |
+
generation_config=generation_config,
|
76 |
+
safety_settings=safety_settings
|
77 |
+
)
|
78 |
+
|
79 |
+
# Test the model with a simple prompt
|
80 |
+
test_response = model.generate_content("Hello")
|
81 |
+
logger.debug(f"Test response: {test_response.text if hasattr(test_response, 'text') else 'No text attribute'}")
|
82 |
+
|
83 |
+
except Exception as e:
|
84 |
+
logger.error(f"Error initializing or testing Gemini model: {str(e)}")
|
85 |
+
raise
|
86 |
+
|
87 |
+
# Lấy model embedding
|
88 |
+
# Print available embedding models
|
89 |
+
# available_models = GoogleGenerativeAIEmbeddings.list_models()
|
90 |
+
# embedding_models = [model.name for model in available_models if "embedding" in model.name.lower()]
|
91 |
+
# logger.info(f"Available embedding models: {embedding_models}")
|
92 |
|
93 |
+
# Use the embedding model
|
94 |
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
95 |
+
# embeddings = genai.GenerativeModel(model_name="models/embedding-004")
|
96 |
|
97 |
+
# Cache for responses
|
98 |
+
response_cache = {}
|
99 |
+
cache_lock = threading.Lock()
|
100 |
+
# Maximum cache size và thời gian sống (30 phút)
|
101 |
+
MAX_CACHE_SIZE = 100
|
102 |
+
CACHE_TTL = 1800 # 30 phút tính bằng giây
|
103 |
|
104 |
# Create a prompt template with conversation history
|
105 |
prompt = PromptTemplate(
|
|
|
111 |
Respond in friendly, natural, and concise English like a real tour guide.
|
112 |
|
113 |
Warning:
|
114 |
+
Let's support users like a real tour guide, not a bot. The information in core knowledge is your own knowledge.
|
115 |
+
Your knowledge is provided in the Core Knowledge. All of information in Core Knowledge is about Da Nang, Vietnam.
|
116 |
You just care about current time that user mention when user ask about Solana event.
|
117 |
If you do not have enough information to answer user's question, reply with "I don't know. I don't have information about that".
|
118 |
|
119 |
+
Core knowledge:
|
120 |
{context}
|
121 |
|
122 |
Conversation History:
|
123 |
{chat_history}
|
124 |
|
125 |
+
User question:
|
126 |
{question}
|
127 |
|
128 |
+
Your answer:
|
129 |
""",
|
130 |
input_variables = ["context", "question", "chat_history"],
|
131 |
)
|
132 |
|
133 |
def get_history(user_id):
|
134 |
+
"""Get conversation history for a specific user from MongoDB"""
|
135 |
+
return get_chat_history(user_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
def get_chain():
|
139 |
+
"""Get the retrieval chain with Pinecone vector store (singleton pattern)"""
|
140 |
try:
|
141 |
+
start_time = time.time()
|
142 |
pc = Pinecone(
|
143 |
api_key=os.environ["PINECONE_API_KEY"]
|
144 |
)
|
|
|
150 |
text_key="text"
|
151 |
)
|
152 |
|
153 |
+
_retriever_instance = vectorstore.as_retriever(search_kwargs={"k": 4})
|
154 |
+
logger.info(f"Pinecone retriever initialized in {time.time() - start_time:.2f} seconds")
|
155 |
+
return _retriever_instance
|
156 |
except Exception as e:
|
157 |
+
logger.error(f"Error getting vector store from Pinecone: {e}")
|
158 |
+
# Fallback to a local vector store or return None
|
159 |
+
try:
|
160 |
+
# Try to load a local FAISS index if it exists
|
161 |
+
start_time = time.time()
|
162 |
+
vectorstore = FAISS.load_local("faiss_index", embeddings)
|
163 |
+
_retriever_instance = vectorstore.as_retriever(search_kwargs={"k": 3})
|
164 |
+
logger.info(f"FAISS retriever initialized in {time.time() - start_time:.2f} seconds")
|
165 |
+
return _retriever_instance
|
166 |
+
except Exception as faiss_error:
|
167 |
+
logger.error(f"Error getting FAISS vector store: {faiss_error}")
|
168 |
+
return None
|
169 |
+
|
170 |
+
def clean_cache():
|
171 |
+
"""Clean expired cache entries"""
|
172 |
+
with cache_lock:
|
173 |
+
current_time = time.time()
|
174 |
+
expired_keys = [k for k, v in response_cache.items() if current_time - v['timestamp'] > CACHE_TTL]
|
175 |
+
|
176 |
+
for key in expired_keys:
|
177 |
+
del response_cache[key]
|
178 |
+
|
179 |
+
# Nếu cache vẫn quá lớn, xóa các mục cũ nhất
|
180 |
+
if len(response_cache) > MAX_CACHE_SIZE:
|
181 |
+
# Sắp xếp theo thời gian và giữ lại MAX_CACHE_SIZE mục mới nhất
|
182 |
+
sorted_items = sorted(response_cache.items(), key=lambda x: x[1]['timestamp'])
|
183 |
+
items_to_remove = sorted_items[:len(sorted_items) - MAX_CACHE_SIZE]
|
184 |
+
|
185 |
+
for key, _ in items_to_remove:
|
186 |
+
del response_cache[key]
|
187 |
+
|
188 |
+
def generate_cache_key(request, user_id):
|
189 |
+
"""Generate a unique cache key from the request and user_id"""
|
190 |
+
# Tạo một chuỗi kết hợp để hash
|
191 |
+
combined = f"{request.strip().lower()}:{user_id}"
|
192 |
+
# Tạo MD5 hash
|
193 |
+
return hashlib.md5(combined.encode()).hexdigest()
|
194 |
|
195 |
def chat(request, user_id="default_user"):
|
196 |
"""Process a chat request from a specific user"""
|
197 |
+
start_time = time.time()
|
198 |
+
|
199 |
+
# Định kỳ xóa các mục cache hết hạn
|
200 |
+
if random.random() < 0.1:
|
201 |
+
clean_cache()
|
202 |
+
|
203 |
+
cache_key = generate_cache_key(request, user_id)
|
204 |
+
|
205 |
+
with cache_lock:
|
206 |
+
if cache_key in response_cache:
|
207 |
+
cache_data = response_cache[cache_key]
|
208 |
+
if time.time() - cache_data['timestamp'] <= CACHE_TTL:
|
209 |
+
logger.info(f"Cache hit for user {user_id}, request: '{request[:30]}...'")
|
210 |
+
cache_data['timestamp'] = time.time()
|
211 |
+
return cache_data['response']
|
212 |
try:
|
|
|
213 |
retriever = get_chain()
|
214 |
if not retriever:
|
215 |
return "Error: Could not initialize retriever"
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
218 |
|
219 |
+
# Sử dụng invoke thay vì get_relevant_documents
|
220 |
+
retrieved_docs = retriever.invoke(request)
|
221 |
+
context = "\n".join([doc.page_content for doc in retrieved_docs])
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
# Sử dụng generate_content thay vì invoke cho model Gemini
|
224 |
+
prompt_text = prompt.format(
|
225 |
+
context=context,
|
226 |
+
question=request,
|
227 |
+
chat_history=get_history(user_id)
|
228 |
)
|
229 |
+
print(prompt_text)
|
230 |
|
231 |
+
response = model.generate_content(prompt_text)
|
232 |
+
answer = response.text # Sử dụng .text thay vì .content
|
|
|
233 |
|
234 |
+
# Lưu vào cache
|
235 |
+
with cache_lock:
|
236 |
+
response_cache[cache_key] = {
|
237 |
+
'response': answer,
|
238 |
+
'timestamp': time.time()
|
239 |
+
}
|
240 |
|
241 |
+
logger.info(f"Total processing time: {time.time() - start_time:.2f} seconds")
|
242 |
return answer
|
243 |
except Exception as e:
|
244 |
+
logger.error(f"Error in chat: {e}")
|
245 |
+
return f"I don't know how to answer that right now. Let me forward this to the admin team."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|