import os import google.generativeai as genai from langchain_google_genai import ChatGoogleGenerativeAI from langchain_community.embeddings import HuggingFaceEmbeddings from langchain_community.vectorstores import FAISS from langchain.chains import RetrievalQA, ConversationalRetrievalChain from langchain_google_genai import ChatGoogleGenerativeAI from langchain.prompts import PromptTemplate from langchain_ollama import OllamaLLM from pinecone import Pinecone, ServerlessSpec from langchain_pinecone import PineconeVectorStore from dotenv import load_dotenv import threading from datetime import datetime from langchain.schema import HumanMessage, AIMessage from langchain_google_genai import GoogleGenerativeAIEmbeddings # Load environment variables load_dotenv() # Configure API keys from environment variables google_api_key = os.getenv("GOOGLE_API_KEY") pinecone_api_key = os.getenv("PINECONE_API_KEY") if not google_api_key or not pinecone_api_key: raise ValueError("Missing required API keys in environment variables") os.environ["GOOGLE_API_KEY"] = google_api_key os.environ["PINECONE_API_KEY"] = pinecone_api_key genai.configure(api_key=google_api_key) #lấy model chatbot model = ChatGoogleGenerativeAI(model="gemini-1.5-flash-8b-latest", temperature=0.8) # model = OllamaLLM(model="llama2") # print("Llama2 đã được tải thành công!") #lấy model embedding embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001") # Biến lưu history cho từng user (dạng chuỗi) user_histories = {} history_lock = threading.Lock() # Create a prompt template with conversation history prompt = PromptTemplate( template = """Goal: You are a professional tour guide assistant that assists users in finding information about places in Da Nang, Vietnam. You can provide details on restaurants, cafes, hotels, attractions, and other local venues. You have to chat with users, who are Da Nang tourists. Return Format: - Respond in clear, natural, and concise English. - If you do not have enough information to answer user's question, reply with "I don't know", and explain that you are not sure about the information. - When sufficient information is available in the Context, provide a specific and informative answer. - Let's support users like a real tour guide, not a bot. The information in context is your own knowledge. - You just care about time that user mention when they ask about Solana event. Warning: - Your knowledge is provided in the Context. All of information in Context is about Da Nang, Vietnam. - Do not fabricate or guess information. - Answer with "I don't know" if you don't have enough information. Context: {context} Conversation History: {chat_history} User question: {question} Your answer: """, input_variables = ["context", "question", "chat_history"], ) def get_history(user_id): """Get conversation history for a specific user""" with history_lock: return user_histories.get(user_id, "") def update_history(user_id, new_entry): """Update conversation history for a user. new_entry should be a string containing the new conversation information, e.g.: "User: {question}\nBot: {answer}\n" """ with history_lock: current_history = user_histories.get(user_id, "") # Store only the last 30 interactions by keeping the 60 most recent lines # (assuming 2 lines per interaction: 1 for user, 1 for bot) history_lines = current_history.split('\n') if len(history_lines) > 60: history_lines = history_lines[-60:] current_history = '\n'.join(history_lines) updated_history = current_history + new_entry + "\n" user_histories[user_id] = updated_history def string_to_message_history(history_str): """Convert string-based history to LangChain message history format""" if not history_str.strip(): return [] messages = [] lines = history_str.strip().split('\n') i = 0 while i < len(lines): line = lines[i].strip() if line.startswith("User:"): user_message = line[5:].strip() # Get the user message without "User:" messages.append(HumanMessage(content=user_message)) # Look for a Bot response (should be the next line) if i + 1 < len(lines) and lines[i + 1].strip().startswith("Bot:"): bot_response = lines[i + 1][4:].strip() # Get bot response without "Bot:" messages.append(AIMessage(content=bot_response)) i += 2 # Skip the bot line too else: i += 1 else: i += 1 # Skip any unexpected format lines return messages def get_chain(): """Get the retrieval chain with Pinecone vector store""" try: pc = Pinecone( api_key=os.environ["PINECONE_API_KEY"] ) # Get the vector store from the existing index vectorstore = PineconeVectorStore.from_existing_index( index_name="testbot768", embedding=embeddings, text_key="text" ) retrieve = vectorstore.as_retriever(search_kwargs={"k": 3}) return retrieve except Exception as e: print(f"Error getting vector store: {e}") return None def chat(request, user_id="default_user"): """Process a chat request from a specific user""" try: # Get retrieval chain retriever = get_chain() if not retriever: return "Error: Could not initialize retriever" # Get current conversation history as string conversation_history_str = get_history(user_id) # Convert string history to LangChain message format message_history = string_to_message_history(conversation_history_str) # Get current time current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Add timestamp to question question_with_time = f"{request}\n(Current time: {current_time})" # print("User question:", question_with_time) # Create a ConversationalRetrievalChain # Get relevant documents from retriever retrieved_docs = retriever.get_relevant_documents(question_with_time) print("Retrieved documents page content:", [doc.page_content for doc in retrieved_docs]) conversation_chain = ConversationalRetrievalChain.from_llm( llm=model, retriever=retriever, combine_docs_chain_kwargs={"prompt": prompt} ) # Call the chain with question and converted message history response = conversation_chain({"question": question_with_time, "chat_history": message_history}) answer = str(response['answer']) # Update conversation history string new_entry = f"User: {question_with_time}\nBot: {answer}" update_history(user_id, new_entry) print(get_history(user_id)) print(answer) return answer except Exception as e: print(f"Error in chat: {e}") return f"I encountered an error: {str(e)}" def clear_memory(user_id="default_user"): """Clear the conversation history for a specific user""" with history_lock: if user_id in user_histories: del user_histories[user_id] return f"Conversation history cleared for user {user_id}" return f"No conversation history found for user {user_id}"