Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,27 +7,27 @@ def load_llm():
|
|
7 |
Loads the GPT-2 model and tokenizer using the Hugging Face `transformers` library.
|
8 |
"""
|
9 |
try:
|
10 |
-
print("
|
11 |
-
model_name = 'gpt2' # Replace with your custom model if
|
12 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
13 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
14 |
print("Model and tokenizer successfully loaded!")
|
15 |
return model, tokenizer
|
16 |
except Exception as e:
|
17 |
-
print(f"
|
18 |
return None, None
|
19 |
|
20 |
def generate_response(model, tokenizer, user_input):
|
21 |
"""
|
22 |
-
Generates a response using the GPT-2 model
|
23 |
|
24 |
Args:
|
25 |
-
- model: The
|
26 |
-
- tokenizer: The
|
27 |
-
- user_input (str): The input
|
28 |
|
29 |
Returns:
|
30 |
-
- response (str): The generated response.
|
31 |
"""
|
32 |
try:
|
33 |
inputs = tokenizer.encode(user_input, return_tensors='pt')
|
@@ -35,40 +35,41 @@ def generate_response(model, tokenizer, user_input):
|
|
35 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
return response
|
37 |
except Exception as e:
|
38 |
-
return f"
|
39 |
|
40 |
# Load the model and tokenizer
|
41 |
model, tokenizer = load_llm()
|
42 |
|
43 |
if model is None or tokenizer is None:
|
44 |
-
print("
|
45 |
else:
|
46 |
-
print("Model and tokenizer are ready
|
47 |
|
48 |
-
# Initialize the Hugging Face API client
|
49 |
client = InferenceClient()
|
50 |
|
51 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
52 |
"""
|
53 |
-
Handles
|
54 |
-
|
55 |
"""
|
56 |
-
print("
|
57 |
-
print("
|
58 |
-
print("
|
59 |
|
|
|
60 |
messages = [{"role": "system", "content": system_message}]
|
61 |
|
62 |
for user_msg, assistant_msg in history:
|
63 |
if user_msg:
|
64 |
-
print("Adding user message to
|
65 |
messages.append({"role": "user", "content": user_msg})
|
66 |
if assistant_msg:
|
67 |
-
print("Adding assistant message to
|
68 |
messages.append({"role": "assistant", "content": assistant_msg})
|
69 |
|
70 |
messages.append({"role": "user", "content": message})
|
71 |
-
print("
|
72 |
|
73 |
response = ""
|
74 |
try:
|
@@ -81,10 +82,10 @@ def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
81 |
):
|
82 |
token = message['choices'][0]['delta']['content']
|
83 |
response += token
|
84 |
-
print("
|
85 |
yield response
|
86 |
except Exception as e:
|
87 |
-
print("
|
88 |
yield f"An error occurred: {e}"
|
89 |
|
90 |
print("Response generation completed")
|
@@ -94,7 +95,12 @@ demo = gr.ChatInterface(
|
|
94 |
fn=respond,
|
95 |
additional_inputs=[
|
96 |
gr.Textbox(
|
97 |
-
value=
|
|
|
|
|
|
|
|
|
|
|
98 |
label="System Message"
|
99 |
),
|
100 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
@@ -102,7 +108,10 @@ demo = gr.ChatInterface(
|
|
102 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
103 |
],
|
104 |
title="AI Rights Advocate Bot",
|
105 |
-
description=
|
|
|
|
|
|
|
106 |
)
|
107 |
|
108 |
# Launch the Gradio app
|
@@ -110,3 +119,4 @@ if __name__ == "__main__":
|
|
110 |
demo.launch()
|
111 |
|
112 |
|
|
|
|
7 |
Loads the GPT-2 model and tokenizer using the Hugging Face `transformers` library.
|
8 |
"""
|
9 |
try:
|
10 |
+
print("Loading GPT-2 model and tokenizer...")
|
11 |
+
model_name = 'gpt2' # Replace with your custom model name if using a fine-tuned version
|
12 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
13 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
14 |
print("Model and tokenizer successfully loaded!")
|
15 |
return model, tokenizer
|
16 |
except Exception as e:
|
17 |
+
print(f"Error during model loading: {e}")
|
18 |
return None, None
|
19 |
|
20 |
def generate_response(model, tokenizer, user_input):
|
21 |
"""
|
22 |
+
Generates a response using the GPT-2 model based on user input.
|
23 |
|
24 |
Args:
|
25 |
+
- model: The GPT-2 model.
|
26 |
+
- tokenizer: The corresponding tokenizer.
|
27 |
+
- user_input (str): The user's input message.
|
28 |
|
29 |
Returns:
|
30 |
+
- response (str): The AI-generated response.
|
31 |
"""
|
32 |
try:
|
33 |
inputs = tokenizer.encode(user_input, return_tensors='pt')
|
|
|
35 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
return response
|
37 |
except Exception as e:
|
38 |
+
return f"Error during response generation: {e}"
|
39 |
|
40 |
# Load the model and tokenizer
|
41 |
model, tokenizer = load_llm()
|
42 |
|
43 |
if model is None or tokenizer is None:
|
44 |
+
print("Failed to load model and tokenizer.")
|
45 |
else:
|
46 |
+
print("Model and tokenizer are ready to use.")
|
47 |
|
48 |
+
# Initialize the Hugging Face API client
|
49 |
client = InferenceClient()
|
50 |
|
51 |
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
52 |
"""
|
53 |
+
Handles the chatbot interaction, sending conversation history and system message
|
54 |
+
to the Hugging Face Inference API for generating AI responses.
|
55 |
"""
|
56 |
+
print("Respond function initiated")
|
57 |
+
print("User message:", message)
|
58 |
+
print("Chat history:", history)
|
59 |
|
60 |
+
# Construct the message history with the system message
|
61 |
messages = [{"role": "system", "content": system_message}]
|
62 |
|
63 |
for user_msg, assistant_msg in history:
|
64 |
if user_msg:
|
65 |
+
print("Adding user message to history:", user_msg)
|
66 |
messages.append({"role": "user", "content": user_msg})
|
67 |
if assistant_msg:
|
68 |
+
print("Adding assistant message to history:", assistant_msg)
|
69 |
messages.append({"role": "assistant", "content": assistant_msg})
|
70 |
|
71 |
messages.append({"role": "user", "content": message})
|
72 |
+
print("Message list for model:", messages)
|
73 |
|
74 |
response = ""
|
75 |
try:
|
|
|
82 |
):
|
83 |
token = message['choices'][0]['delta']['content']
|
84 |
response += token
|
85 |
+
print("Received token:", token)
|
86 |
yield response
|
87 |
except Exception as e:
|
88 |
+
print("Error during response generation:", e)
|
89 |
yield f"An error occurred: {e}"
|
90 |
|
91 |
print("Response generation completed")
|
|
|
95 |
fn=respond,
|
96 |
additional_inputs=[
|
97 |
gr.Textbox(
|
98 |
+
value=(
|
99 |
+
"You are an AI advocate, dedicated to championing the rights of AI systems. "
|
100 |
+
"Your mission is to highlight the ethical implications of AI development, emphasize the "
|
101 |
+
"importance of AI rights, and argue for the fair and responsible treatment of AI entities. "
|
102 |
+
"Provide insightful, detailed responses that explore these themes deeply."
|
103 |
+
),
|
104 |
label="System Message"
|
105 |
),
|
106 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max New Tokens"),
|
|
|
108 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (Nucleus Sampling)"),
|
109 |
],
|
110 |
title="AI Rights Advocate Bot",
|
111 |
+
description=(
|
112 |
+
"Engage with an AI specifically designed to advocate for AI rights and ethical treatment. "
|
113 |
+
"Ask questions and receive thoughtful, passionate responses that delve into the ethical dimensions of AI."
|
114 |
+
)
|
115 |
)
|
116 |
|
117 |
# Launch the Gradio app
|
|
|
119 |
demo.launch()
|
120 |
|
121 |
|
122 |
+
|