Spaces:
Sleeping
Sleeping
Create app
Browse files
app
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain import PromptTemplate
|
2 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
3 |
+
from langchain_community.vectorstores import FAISS
|
4 |
+
from langchain_community.llms import CTransformers
|
5 |
+
from langchain.chains import RetrievalQA
|
6 |
+
import gradio as gr
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
+
|
9 |
+
DB_FAISS_PATH = "vectorstores/db_faiss"
|
10 |
+
|
11 |
+
def load_llm():
|
12 |
+
"""
|
13 |
+
Load the LLaMA model for the language model.
|
14 |
+
"""
|
15 |
+
model_name = 'TheBloke/Llama-2-7B-Chat-GGML'
|
16 |
+
model_path = hf_hub_download(repo_id=model_name, filename='llama-2-7b-chat.ggmlv3.q8_0.bin', cache_dir='./models')
|
17 |
+
llm = CTransformers(
|
18 |
+
model=model_path,
|
19 |
+
model_type="llama",
|
20 |
+
max_new_tokens=512,
|
21 |
+
temperature=0.5
|
22 |
+
)
|
23 |
+
return llm
|
24 |
+
|
25 |
+
def set_custom_prompt():
|
26 |
+
"""
|
27 |
+
Define a custom prompt template for the QA model.
|
28 |
+
"""
|
29 |
+
custom_prompt_template = """Use the following pieces of information to answer the user's question.
|
30 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
31 |
+
|
32 |
+
Context: {context}
|
33 |
+
Question: {question}
|
34 |
+
|
35 |
+
only return the helpful answer below and nothing else.
|
36 |
+
Helpful answer:
|
37 |
+
"""
|
38 |
+
prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question'])
|
39 |
+
return prompt
|
40 |
+
|
41 |
+
def retrieval_QA_chain(llm, prompt, db):
|
42 |
+
"""
|
43 |
+
Create a RetrievalQA chain with the specified LLM, prompt, and vector store.
|
44 |
+
"""
|
45 |
+
qachain = RetrievalQA.from_chain_type(
|
46 |
+
llm=llm,
|
47 |
+
chain_type="stuff",
|
48 |
+
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
49 |
+
return_source_documents=True,
|
50 |
+
chain_type_kwargs={'prompt': prompt}
|
51 |
+
)
|
52 |
+
return qachain
|
53 |
+
|
54 |
+
def qa_bot():
|
55 |
+
"""
|
56 |
+
Initialize the QA bot with embeddings, vector store, LLM, and prompt.
|
57 |
+
"""
|
58 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-miniLM-L6-V2', model_kwargs={'device': 'cpu'})
|
59 |
+
db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
|
60 |
+
llm = load_llm()
|
61 |
+
qa_prompt = set_custom_prompt()
|
62 |
+
qa = retrieval_QA_chain(llm, qa_prompt, db)
|
63 |
+
return qa
|
64 |
+
|
65 |
+
bot = qa_bot()
|
66 |
+
|
67 |
+
def chatbot_response(message, history):
|
68 |
+
"""
|
69 |
+
Generate a response from the chatbot based on the user input and conversation history.
|
70 |
+
"""
|
71 |
+
try:
|
72 |
+
response = bot({'query': message})
|
73 |
+
answer = response["result"]
|
74 |
+
sources = response["source_documents"]
|
75 |
+
if sources:
|
76 |
+
answer += f"\nSources: {sources}"
|
77 |
+
else:
|
78 |
+
answer += "\nNo sources found"
|
79 |
+
history.append((message, answer))
|
80 |
+
except Exception as e:
|
81 |
+
history.append((message, f"An error occurred: {str(e)}"))
|
82 |
+
return history, history
|
83 |
+
|
84 |
+
# Set up the Gradio interface
|
85 |
+
demo = gr.Interface(
|
86 |
+
fn=chatbot_response,
|
87 |
+
inputs=[
|
88 |
+
gr.Textbox(label="User Input"),
|
89 |
+
gr.State(value=[], label="Conversation History")
|
90 |
+
],
|
91 |
+
outputs=[
|
92 |
+
gr.Chatbot(label="Chatbot Response"),
|
93 |
+
gr.State()
|
94 |
+
],
|
95 |
+
title="AdvocateAI",
|
96 |
+
description="Ask questions about AI rights and get informed, passionate answers."
|
97 |
+
)
|
98 |
+
|
99 |
+
if __name__ == "__main__":
|
100 |
+
demo.launch()
|