Manasa1 commited on
Commit
2f9a8d1
·
verified ·
1 Parent(s): e578911

Upload 2 files

Browse files
Files changed (2) hide show
  1. .env +2 -0
  2. app.py +98 -0
.env ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GROQ_API_KEY = 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
2
+ NLTK_DATA="C:\Users\sanath\AppData\Roaming\nltk_data\tokenizers\punkt_tab"
app.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dotenv import load_dotenv
2
+ import streamlit as st
3
+ from langchain_community.document_loaders import UnstructuredPDFLoader
4
+ from langchain_text_splitters.character import CharacterTextSplitter
5
+ from langchain_community.vectorstores import FAISS
6
+ from langchain_community.embeddings import HuggingFaceEmbeddings
7
+ from langchain_groq import ChatGroq
8
+ from langchain.memory import ConversationBufferMemory
9
+ from langchain.chains import ConversationalRetrievalChain
10
+ import os
11
+ import nltk
12
+ nltk.download('punkt')
13
+ nltk_data_dir = os.getenv("NLTK_DATA")
14
+
15
+
16
+ load_dotenv()
17
+
18
+ working_dir = os.path.dirname(os.path.abspath(__file__))
19
+
20
+ def load_documents(file_path):
21
+ loader = UnstructuredPDFLoader(file_path)
22
+ documents = loader.load()
23
+ return documents
24
+
25
+ def setup_vectorstore(documents):
26
+ embeddings = HuggingFaceEmbeddings
27
+ text_splitter = CharacterTextSplitter(
28
+ separator="/n",
29
+ chunk_size = 1000,
30
+ chunk_overlap = 200
31
+ )
32
+ doc_chunks = text_splitter.split_documents(documents)
33
+ vectorstores = FAISS.from_documents(doc_chunks,embeddings)
34
+ return vectorstores
35
+
36
+ def create_chain(vectorstores):
37
+ llm = ChatGroq(
38
+ model="llama-3.1-70b-versatile",
39
+ temperature=0
40
+ )
41
+ retriever = vectorstores.as_retriever()
42
+ memory = ConversationBufferMemory(
43
+ llm = llm,
44
+ output_key= "answer",
45
+ memory_key = "chat_history",
46
+ return_messages=True
47
+
48
+ )
49
+ chain = ConversationalRetrievalChain.from_llm(
50
+ llm = llm,
51
+ retriever = retriever,
52
+ memory = memory,
53
+ verbose = True
54
+ )
55
+ return chain
56
+
57
+ st.set_page_config(
58
+ page_title= "Chat with your documents",
59
+ page_icon= "📑",
60
+ layout="centered"
61
+
62
+ )
63
+
64
+ st.title("📝Chat With your docs 😎")
65
+
66
+ if "chat_history" not in st.session_state:
67
+ st.session_state.chat_history = []
68
+
69
+ uploaded_file = st.file_uploader(label="Upload your PDF")
70
+
71
+ if uploaded_file:
72
+ file_path = f"{working_dir}{uploaded_file.name}"
73
+ with open(file_path,"wb") as f:
74
+ f.write(uploaded_file.getbuffer())
75
+
76
+ if "vectorstores" not in st.session_state:
77
+ st.session_state.vectorstores = setup_vectorstore(load_documents(file_path))
78
+
79
+ if "conversation_chain" not in st.session_state:
80
+ st.session_state.conversation_chain = create_chain(st.session_state.vectorstores)
81
+
82
+
83
+ for message in st.session_state.chat_history:
84
+ with st.chat_message(message["role"]):
85
+ st.markdown(message["content"])
86
+
87
+ user_input = st.chat_input("Ask any questions relevant to uploaded pdf")
88
+
89
+ if user_input:
90
+ st.session_state.chat_history.append({"role":"user","content":user_input})
91
+ with st.chat_message("user"):
92
+ st.markdown(user_input)
93
+
94
+ with st.chat_message("assistant"):
95
+ response = st.session_state.conversation_chain({"question":user_input})
96
+ assistant_response = response["answer"]
97
+ st.markdown(assistant_response)
98
+ st.session_state.chat_history.append({"role":"assistant","content":assistant_response})