Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
.env
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GROQ_API_KEY = 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
|
2 |
+
NLTK_DATA="C:\Users\sanath\AppData\Roaming\nltk_data\tokenizers\punkt_tab"
|
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import streamlit as st
|
3 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
4 |
+
from langchain_text_splitters.character import CharacterTextSplitter
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
import os
|
11 |
+
import nltk
|
12 |
+
nltk.download('punkt')
|
13 |
+
nltk_data_dir = os.getenv("NLTK_DATA")
|
14 |
+
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
working_dir = os.path.dirname(os.path.abspath(__file__))
|
19 |
+
|
20 |
+
def load_documents(file_path):
|
21 |
+
loader = UnstructuredPDFLoader(file_path)
|
22 |
+
documents = loader.load()
|
23 |
+
return documents
|
24 |
+
|
25 |
+
def setup_vectorstore(documents):
|
26 |
+
embeddings = HuggingFaceEmbeddings
|
27 |
+
text_splitter = CharacterTextSplitter(
|
28 |
+
separator="/n",
|
29 |
+
chunk_size = 1000,
|
30 |
+
chunk_overlap = 200
|
31 |
+
)
|
32 |
+
doc_chunks = text_splitter.split_documents(documents)
|
33 |
+
vectorstores = FAISS.from_documents(doc_chunks,embeddings)
|
34 |
+
return vectorstores
|
35 |
+
|
36 |
+
def create_chain(vectorstores):
|
37 |
+
llm = ChatGroq(
|
38 |
+
model="llama-3.1-70b-versatile",
|
39 |
+
temperature=0
|
40 |
+
)
|
41 |
+
retriever = vectorstores.as_retriever()
|
42 |
+
memory = ConversationBufferMemory(
|
43 |
+
llm = llm,
|
44 |
+
output_key= "answer",
|
45 |
+
memory_key = "chat_history",
|
46 |
+
return_messages=True
|
47 |
+
|
48 |
+
)
|
49 |
+
chain = ConversationalRetrievalChain.from_llm(
|
50 |
+
llm = llm,
|
51 |
+
retriever = retriever,
|
52 |
+
memory = memory,
|
53 |
+
verbose = True
|
54 |
+
)
|
55 |
+
return chain
|
56 |
+
|
57 |
+
st.set_page_config(
|
58 |
+
page_title= "Chat with your documents",
|
59 |
+
page_icon= "📑",
|
60 |
+
layout="centered"
|
61 |
+
|
62 |
+
)
|
63 |
+
|
64 |
+
st.title("📝Chat With your docs 😎")
|
65 |
+
|
66 |
+
if "chat_history" not in st.session_state:
|
67 |
+
st.session_state.chat_history = []
|
68 |
+
|
69 |
+
uploaded_file = st.file_uploader(label="Upload your PDF")
|
70 |
+
|
71 |
+
if uploaded_file:
|
72 |
+
file_path = f"{working_dir}{uploaded_file.name}"
|
73 |
+
with open(file_path,"wb") as f:
|
74 |
+
f.write(uploaded_file.getbuffer())
|
75 |
+
|
76 |
+
if "vectorstores" not in st.session_state:
|
77 |
+
st.session_state.vectorstores = setup_vectorstore(load_documents(file_path))
|
78 |
+
|
79 |
+
if "conversation_chain" not in st.session_state:
|
80 |
+
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores)
|
81 |
+
|
82 |
+
|
83 |
+
for message in st.session_state.chat_history:
|
84 |
+
with st.chat_message(message["role"]):
|
85 |
+
st.markdown(message["content"])
|
86 |
+
|
87 |
+
user_input = st.chat_input("Ask any questions relevant to uploaded pdf")
|
88 |
+
|
89 |
+
if user_input:
|
90 |
+
st.session_state.chat_history.append({"role":"user","content":user_input})
|
91 |
+
with st.chat_message("user"):
|
92 |
+
st.markdown(user_input)
|
93 |
+
|
94 |
+
with st.chat_message("assistant"):
|
95 |
+
response = st.session_state.conversation_chain({"question":user_input})
|
96 |
+
assistant_response = response["answer"]
|
97 |
+
st.markdown(assistant_response)
|
98 |
+
st.session_state.chat_history.append({"role":"assistant","content":assistant_response})
|