Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,14 +11,16 @@ import os
|
|
11 |
import nltk
|
12 |
nltk.download('punkt')
|
13 |
|
|
|
|
|
14 |
|
15 |
-
import os
|
16 |
secret = os.getenv('Groq_api')
|
17 |
|
18 |
working_dir = os.path.dirname(os.path.abspath(__file__))
|
19 |
|
20 |
def load_documents(file_path):
|
21 |
-
|
|
|
22 |
documents = loader.load()
|
23 |
return documents
|
24 |
|
@@ -26,52 +28,52 @@ def setup_vectorstore(documents):
|
|
26 |
embeddings = HuggingFaceEmbeddings()
|
27 |
text_splitter = CharacterTextSplitter(
|
28 |
separator="/n",
|
29 |
-
chunk_size
|
30 |
-
chunk_overlap
|
31 |
)
|
32 |
doc_chunks = text_splitter.split_documents(documents)
|
33 |
-
vectorstores = FAISS.from_documents(doc_chunks,embeddings)
|
34 |
return vectorstores
|
35 |
|
36 |
def create_chain(vectorstores):
|
37 |
llm = ChatGroq(
|
38 |
-
api_key
|
39 |
model="llama-3.3-70b-versatile",
|
40 |
temperature=0
|
41 |
)
|
42 |
retriever = vectorstores.as_retriever()
|
43 |
memory = ConversationBufferMemory(
|
44 |
-
llm
|
45 |
-
output_key=
|
46 |
-
memory_key
|
47 |
return_messages=True
|
48 |
-
|
49 |
)
|
50 |
chain = ConversationalRetrievalChain.from_llm(
|
51 |
-
llm
|
52 |
-
retriever
|
53 |
-
memory
|
54 |
-
verbose
|
55 |
)
|
56 |
return chain
|
57 |
|
|
|
58 |
st.set_page_config(
|
59 |
-
page_title=
|
60 |
-
page_icon=
|
61 |
layout="centered"
|
62 |
-
|
63 |
)
|
64 |
|
65 |
st.title("๐Chat With your docs ๐")
|
66 |
|
|
|
67 |
if "chat_history" not in st.session_state:
|
68 |
st.session_state.chat_history = []
|
69 |
|
70 |
uploaded_file = st.file_uploader(label="Upload your PDF")
|
71 |
|
72 |
if uploaded_file:
|
73 |
-
file_path = f"{working_dir}{uploaded_file.name}"
|
74 |
-
with open(file_path,"wb") as f:
|
75 |
f.write(uploaded_file.getbuffer())
|
76 |
|
77 |
if "vectorstores" not in st.session_state:
|
@@ -80,20 +82,21 @@ if uploaded_file:
|
|
80 |
if "conversation_chain" not in st.session_state:
|
81 |
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores)
|
82 |
|
83 |
-
|
84 |
for message in st.session_state.chat_history:
|
85 |
with st.chat_message(message["role"]):
|
86 |
st.markdown(message["content"])
|
87 |
|
|
|
88 |
user_input = st.chat_input("Ask any questions relevant to uploaded pdf")
|
89 |
|
90 |
if user_input:
|
91 |
-
st.session_state.chat_history.append({"role":"user","content":user_input})
|
92 |
with st.chat_message("user"):
|
93 |
st.markdown(user_input)
|
94 |
|
95 |
with st.chat_message("assistant"):
|
96 |
-
response = st.session_state.conversation_chain({"question":user_input})
|
97 |
assistant_response = response["answer"]
|
98 |
st.markdown(assistant_response)
|
99 |
-
st.session_state.chat_history.append({"role":"assistant","content":assistant_response})
|
|
|
11 |
import nltk
|
12 |
nltk.download('punkt')
|
13 |
|
14 |
+
# Install Poppler in the runtime environment
|
15 |
+
os.system("apt-get update && apt-get install -y poppler-utils")
|
16 |
|
|
|
17 |
secret = os.getenv('Groq_api')
|
18 |
|
19 |
working_dir = os.path.dirname(os.path.abspath(__file__))
|
20 |
|
21 |
def load_documents(file_path):
|
22 |
+
# Specify poppler_path to ensure compatibility in Spaces
|
23 |
+
loader = UnstructuredPDFLoader(file_path, poppler_path="/usr/bin")
|
24 |
documents = loader.load()
|
25 |
return documents
|
26 |
|
|
|
28 |
embeddings = HuggingFaceEmbeddings()
|
29 |
text_splitter = CharacterTextSplitter(
|
30 |
separator="/n",
|
31 |
+
chunk_size=1000,
|
32 |
+
chunk_overlap=200
|
33 |
)
|
34 |
doc_chunks = text_splitter.split_documents(documents)
|
35 |
+
vectorstores = FAISS.from_documents(doc_chunks, embeddings)
|
36 |
return vectorstores
|
37 |
|
38 |
def create_chain(vectorstores):
|
39 |
llm = ChatGroq(
|
40 |
+
api_key=secret,
|
41 |
model="llama-3.3-70b-versatile",
|
42 |
temperature=0
|
43 |
)
|
44 |
retriever = vectorstores.as_retriever()
|
45 |
memory = ConversationBufferMemory(
|
46 |
+
llm=llm,
|
47 |
+
output_key="answer",
|
48 |
+
memory_key="chat_history",
|
49 |
return_messages=True
|
|
|
50 |
)
|
51 |
chain = ConversationalRetrievalChain.from_llm(
|
52 |
+
llm=llm,
|
53 |
+
retriever=retriever,
|
54 |
+
memory=memory,
|
55 |
+
verbose=True
|
56 |
)
|
57 |
return chain
|
58 |
|
59 |
+
# Streamlit page configuration
|
60 |
st.set_page_config(
|
61 |
+
page_title="Chat with your documents",
|
62 |
+
page_icon="๐",
|
63 |
layout="centered"
|
|
|
64 |
)
|
65 |
|
66 |
st.title("๐Chat With your docs ๐")
|
67 |
|
68 |
+
# Initialize session states
|
69 |
if "chat_history" not in st.session_state:
|
70 |
st.session_state.chat_history = []
|
71 |
|
72 |
uploaded_file = st.file_uploader(label="Upload your PDF")
|
73 |
|
74 |
if uploaded_file:
|
75 |
+
file_path = f"{working_dir}/{uploaded_file.name}"
|
76 |
+
with open(file_path, "wb") as f:
|
77 |
f.write(uploaded_file.getbuffer())
|
78 |
|
79 |
if "vectorstores" not in st.session_state:
|
|
|
82 |
if "conversation_chain" not in st.session_state:
|
83 |
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores)
|
84 |
|
85 |
+
# Display chat history
|
86 |
for message in st.session_state.chat_history:
|
87 |
with st.chat_message(message["role"]):
|
88 |
st.markdown(message["content"])
|
89 |
|
90 |
+
# User input handling
|
91 |
user_input = st.chat_input("Ask any questions relevant to uploaded pdf")
|
92 |
|
93 |
if user_input:
|
94 |
+
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
95 |
with st.chat_message("user"):
|
96 |
st.markdown(user_input)
|
97 |
|
98 |
with st.chat_message("assistant"):
|
99 |
+
response = st.session_state.conversation_chain({"question": user_input})
|
100 |
assistant_response = response["answer"]
|
101 |
st.markdown(assistant_response)
|
102 |
+
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|