Spaces:
Sleeping
Sleeping
File size: 2,784 Bytes
76ba4f4 2086e56 a8a3333 76ba4f4 a8a3333 76ba4f4 a8a3333 ac0650f 76ba4f4 ac0650f 1cfde01 76ba4f4 ac0650f 76ba4f4 ac0650f 76ba4f4 0919ad9 76ba4f4 1cfde01 76ba4f4 0919ad9 76ba4f4 43a5e80 76ba4f4 43a5e80 76ba4f4 815da2f 43a5e80 935f6c1 43a5e80 76ba4f4 43a5e80 0919ad9 43a5e80 0919ad9 815da2f 43a5e80 815da2f 43a5e80 76ba4f4 1cfde01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
import yfinance as yf
import pandas as pd
# Mapping company names to their ticker symbols
company_dict = {
"Apple": "AAPL",
"Google": "GOOGL",
"Microsoft": "MSFT",
"Amazon": "AMZN",
"Tesla": "TSLA"
}
# Function to fetch ESG data for the selected company
def fetch_esg_data(company_name):
# Get the ticker symbol from the company name
ticker = company_dict[company_name]
# Fetch ESG data from Yahoo Finance
stock = yf.Ticker(ticker)
esg_data = stock.sustainability
# If ESG data is available, process it into a DataFrame
if esg_data is not None and not esg_data.empty:
esg_df = pd.DataFrame(esg_data)
# Extract only the relevant ESG scores and convert to a DataFrame
esg_scores = esg_df.loc[["environmentScore", "socialScore", "governanceScore"], :].dropna().astype(float)
# Prepare a DataFrame for plotting
plot_df = pd.DataFrame({
"ESG Category": ["Environment", "Social", "Governance"],
"Score": esg_scores.squeeze().values
})
# Save the ESG data to a CSV file
csv_filename = f"{ticker}_esg_data.csv"
esg_df.to_csv(csv_filename)
return plot_df, csv_filename # Return the plot DataFrame and the CSV filename
else:
return pd.DataFrame(), None # Return empty DataFrame and None if no data is available
# Gradio interface with a dropdown for company selection, line plot visualization, and CSV download
def app_interface():
with gr.Blocks() as app:
with gr.Tab("Plot"):
# Dropdown to select company name
company = gr.Dropdown(label="Select Company", choices=list(company_dict.keys()), value="Apple")
# Button to fetch and plot ESG data
plot_button = gr.Button("Generate ESG Plot")
# LinePlot component for displaying the ESG data
line_plot = gr.LinePlot(label="ESG Scores Line Plot", x="ESG Category", y="Score", overlay_point=True)
# ScatterPlot component for displaying the ESG data
scatter_plot = gr.ScatterPlot(label="ESG Scores Scatter Plot", x="ESG Category", y="Score", overlay_point=True)
# Textbox to display messages
message = gr.Textbox(label="Message", interactive=False)
# File output for CSV download
csv_output = gr.File(label="Download CSV")
# Define the action when the "Generate ESG Plot" button is clicked
plot_button.click(fn=fetch_esg_data,
inputs=company,
outputs=[line_plot, csv_output, scatter_plot])
return app
# Launch the Gradio app
app = app_interface()
app.launch()
|