File size: 2,720 Bytes
76ba4f4
2086e56
 
a8a3333
76ba4f4
 
a8a3333
 
76ba4f4
a8a3333
 
 
 
ac0650f
 
8e4352d
76ba4f4
8e4352d
 
76ba4f4
 
8e4352d
 
 
76ba4f4
8e4352d
 
ac0650f
8e4352d
 
ac0650f
 
 
 
8e4352d
0919ad9
 
 
8e4352d
 
76ba4f4
8e4352d
2de254e
76ba4f4
8e4352d
76ba4f4
 
8e4352d
 
ded4314
8e4352d
 
ded4314
8e4352d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76ba4f4
 
 
 
8e4352d
2de254e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import gradio as gr
import yfinance as yf
import pandas as pd

# Mapping company names to their ticker symbols
company_dict = {
    "Apple": "AAPL",
    "Google": "GOOGL",
    "Microsoft": "MSFT",
    "Amazon": "AMZN",
    "Tesla": "TSLA"
}

# Function to fetch ESG data for the selected company
def fetch_esg_data(company_name):
    # Get the ticker symbol from the company name
    ticker = company_dict[company_name]
    
    # Fetch ESG data from Yahoo Finance
    stock = yf.Ticker(ticker)
    esg_data = stock.sustainability
    
    # If ESG data is available, process it into a DataFrame
    if esg_data is not None:
        esg_df = pd.DataFrame(esg_data)

        # Extract only the relevant ESG scores and convert to a DataFrame
        esg_scores = esg_df.loc[["environmentScore", "socialScore", "governanceScore"], :].dropna().astype(float)
        
        # Prepare a DataFrame for plotting
        plot_df = pd.DataFrame({
            "ESG Category": ["Environment", "Social", "Governance"],
            "Score": esg_scores.squeeze().values
        })
        
        # Save the ESG data to a CSV file
        csv_filename = f"{ticker}_esg_data.csv"
        esg_df.to_csv(csv_filename)

        return plot_df, csv_filename  # Return the plot DataFrame and the CSV filename
    else:
        # Return an empty DataFrame and None if no data is available
        return pd.DataFrame(), None

# Gradio interface with a dropdown for company selection, line plot, scatter plot visualization, and CSV download
def app_interface():
    with gr.Blocks() as app:
        # Dropdown to select company name
        company = gr.Dropdown(label="Select Company", choices=list(company_dict.keys()), value="Apple")
        
        # Button to fetch and plot ESG data
        plot_button = gr.Button("Generate ESG Plots")
        
        # LinePlot component for displaying the ESG data
        line_plot_output = gr.LinePlot(label="ESG Scores Line Plot", x="ESG Category", y="Score", overlay_point=True)

        # ScatterPlot component for displaying the ESG data
        scatter_plot_output = gr.ScatterPlot(label="ESG Scores Scatter Plot", x="ESG Category", y="Score", overlay_point=True)

        # Textbox to display messages
        message = gr.Textbox(label="Message", interactive=False)

        # File output for CSV download
        csv_output = gr.File(label="Download CSV")

        # Define the action when the "Generate ESG Plot" button is clicked
        plot_button.click(fn=fetch_esg_data, 
                          inputs=company, 
                          outputs=[line_plot_output, scatter_plot_output, csv_output])

    return app

# Launch the Gradio app
app = app_interface()
app.launch()