File size: 2,872 Bytes
76ba4f4
2086e56
 
a8a3333
76ba4f4
 
a8a3333
 
76ba4f4
a8a3333
 
 
 
ac0650f
 
8e4352d
76ba4f4
8e4352d
 
76ba4f4
 
8e4352d
 
 
76ba4f4
8e4352d
 
ac0650f
8e4352d
 
ac0650f
 
 
 
8e4352d
0919ad9
 
 
8e4352d
 
76ba4f4
8e4352d
2de254e
76ba4f4
9302e83
76ba4f4
 
9302e83
 
 
ded4314
9302e83
 
ded4314
9302e83
 
8e4352d
e03238f
 
 
9302e83
 
8e4352d
9302e83
 
 
e03238f
9302e83
 
 
 
 
 
 
 
 
8e4352d
76ba4f4
 
 
 
8e4352d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import yfinance as yf
import pandas as pd

# Mapping company names to their ticker symbols
company_dict = {
    "Apple": "AAPL",
    "Google": "GOOGL",
    "Microsoft": "MSFT",
    "Amazon": "AMZN",
    "Tesla": "TSLA"
}

# Function to fetch ESG data for the selected company
def fetch_esg_data(company_name):
    # Get the ticker symbol from the company name
    ticker = company_dict[company_name]
    
    # Fetch ESG data from Yahoo Finance
    stock = yf.Ticker(ticker)
    esg_data = stock.sustainability
    
    # If ESG data is available, process it into a DataFrame
    if esg_data is not None:
        esg_df = pd.DataFrame(esg_data)

        # Extract only the relevant ESG scores and convert to a DataFrame
        esg_scores = esg_df.loc[["environmentScore", "socialScore", "governanceScore"], :].dropna().astype(float)
        
        # Prepare a DataFrame for plotting
        plot_df = pd.DataFrame({
            "ESG Category": ["Environment", "Social", "Governance"],
            "Score": esg_scores.squeeze().values
        })
        
        # Save the ESG data to a CSV file
        csv_filename = f"{ticker}_esg_data.csv"
        esg_df.to_csv(csv_filename)

        return plot_df, csv_filename  # Return the plot DataFrame and the CSV filename
    else:
        # Return an empty DataFrame and None if no data is available
        return pd.DataFrame(), None

# Gradio interface with multiple tabs
def app_interface():
    with gr.Blocks() as app:
        with gr.Tab("ESG Data Analysis"):
            # Dropdown to select company name
            company = gr.Dropdown(label="Select Company", choices=list(company_dict.keys()), value="Apple")
        
            # Button to fetch and plot ESG data
            plot_button = gr.Button("Generate ESG Plot")
        
            # LinePlot component for displaying the ESG data
            plot_output = gr.LinePlot(label="ESG Scores Plot", x="ESG Category", y="Score", overlay_point=True)

            bar_plot = gr.BarPlot(label="Sample Bar Plot", x="ESG Category", y="Score", x_bins=10, y_aggregate="sum")

            
            # File output for CSV download
            csv_output = gr.File(label="Download CSV")

            # Define the action when the "Generate ESG Plot" button is clicked
            plot_button.click(fn=fetch_esg_data, 
                              inputs=company, 
                              outputs=[plot_output,bar_plot, csv_output])

        with gr.Tab("Tab 2"):
            gr.Markdown("This is Tab 2. You can add more content here.")

        with gr.Tab("Tab 3"):
            gr.Markdown("This is Tab 3. Add your custom functionality here.")

        with gr.Tab("Tab 4"):
            gr.Markdown("This is Tab 4. Add more features or visualization here.")

    return app

# Launch the Gradio app
app = app_interface()
app.launch()