Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -21,56 +21,7 @@ COMPANY_DICT = {
|
|
21 |
"Netflix": "NFLX"
|
22 |
}
|
23 |
|
24 |
-
def
|
25 |
-
"""
|
26 |
-
Fetch and process ESG data for the selected company.
|
27 |
-
|
28 |
-
Args:
|
29 |
-
company_name (str): Name of the company to fetch ESG data for
|
30 |
-
|
31 |
-
Returns:
|
32 |
-
Tuple containing:
|
33 |
-
- Path to saved CSV file
|
34 |
-
- Three plotly figures for different visualizations
|
35 |
-
"""
|
36 |
-
try:
|
37 |
-
# Get the ticker symbol
|
38 |
-
ticker = COMPANY_DICT[company_name]
|
39 |
-
logger.info(f"Fetching ESG data for {company_name} ({ticker})")
|
40 |
-
|
41 |
-
# Fetch ESG data
|
42 |
-
stock = yf.Ticker(ticker)
|
43 |
-
esg_data = stock.sustainability
|
44 |
-
|
45 |
-
if esg_data is None:
|
46 |
-
return None, None, None, None
|
47 |
-
|
48 |
-
# Process ESG data
|
49 |
-
esg_df = pd.DataFrame(esg_data)
|
50 |
-
esg_scores = esg_df.loc[["environmentScore", "socialScore", "governanceScore"], :].dropna().astype(float)
|
51 |
-
|
52 |
-
# Create plotting DataFrame
|
53 |
-
plot_df = pd.DataFrame({
|
54 |
-
"ESG Category": ["Environment", "Social", "Governance"],
|
55 |
-
"Score": esg_scores.squeeze().values
|
56 |
-
})
|
57 |
-
|
58 |
-
# Save to CSV
|
59 |
-
csv_filename = f"{ticker}_esg_data.csv"
|
60 |
-
esg_df.to_csv(csv_filename)
|
61 |
-
|
62 |
-
# Create different plot types using plotly
|
63 |
-
line_fig = create_line_plot(plot_df)
|
64 |
-
scatter_fig = create_scatter_plot(plot_df)
|
65 |
-
bar_fig = create_bar_plot(plot_df)
|
66 |
-
|
67 |
-
return csv_filename, line_fig, scatter_fig, bar_fig
|
68 |
-
|
69 |
-
except Exception as e:
|
70 |
-
logger.error(f"Error fetching ESG data: {str(e)}")
|
71 |
-
return None, None, None, None
|
72 |
-
|
73 |
-
def create_line_plot(df: pd.DataFrame) -> dict:
|
74 |
"""Create a line plot using plotly"""
|
75 |
fig = go.Figure()
|
76 |
fig.add_trace(go.Scatter(
|
@@ -85,9 +36,9 @@ def create_line_plot(df: pd.DataFrame) -> dict:
|
|
85 |
yaxis_title="Score",
|
86 |
yaxis_range=[0, 100]
|
87 |
)
|
88 |
-
return fig
|
89 |
|
90 |
-
def create_scatter_plot(df: pd.DataFrame) ->
|
91 |
"""Create a scatter plot using plotly"""
|
92 |
fig = go.Figure()
|
93 |
fig.add_trace(go.Scatter(
|
@@ -103,9 +54,9 @@ def create_scatter_plot(df: pd.DataFrame) -> dict:
|
|
103 |
yaxis_title="Score",
|
104 |
yaxis_range=[0, 100]
|
105 |
)
|
106 |
-
return fig
|
107 |
|
108 |
-
def create_bar_plot(df: pd.DataFrame) ->
|
109 |
"""Create a bar plot using plotly"""
|
110 |
fig = go.Figure()
|
111 |
fig.add_trace(go.Bar(
|
@@ -119,7 +70,51 @@ def create_bar_plot(df: pd.DataFrame) -> dict:
|
|
119 |
yaxis_title="Score",
|
120 |
yaxis_range=[0, 100]
|
121 |
)
|
122 |
-
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
def create_interface() -> gr.Blocks:
|
125 |
"""Create the Gradio interface"""
|
@@ -136,60 +131,61 @@ def create_interface() -> gr.Blocks:
|
|
136 |
value="Apple"
|
137 |
)
|
138 |
plot_button = gr.Button("Generate ESG Analysis", variant="primary")
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
142 |
|
143 |
with gr.Row():
|
144 |
with gr.Column():
|
145 |
-
|
146 |
-
|
147 |
-
with gr.Row():
|
148 |
-
with gr.Column():
|
149 |
-
scatter_plot = gr.Plot(label="ESG Score Distribution")
|
150 |
-
with gr.Column():
|
151 |
-
bar_plot = gr.Plot(label="ESG Score Comparison")
|
152 |
-
|
153 |
-
status_message = gr.Textbox(
|
154 |
-
label="Status",
|
155 |
-
interactive=False,
|
156 |
-
visible=True
|
157 |
-
)
|
158 |
|
159 |
-
def
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
csv_file,
|
174 |
-
line,
|
175 |
-
scatter,
|
176 |
-
bar,
|
177 |
-
f"Successfully generated ESG analysis for {company_name}"
|
178 |
)
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
182 |
# Connect the button click to the process function
|
183 |
plot_button.click(
|
184 |
-
fn=
|
185 |
inputs=company,
|
186 |
-
outputs=[
|
187 |
-
csv_output,
|
188 |
-
line_plot,
|
189 |
-
scatter_plot,
|
190 |
-
bar_plot,
|
191 |
-
status_message
|
192 |
-
],
|
193 |
api_name="generate_esg_analysis"
|
194 |
)
|
195 |
|
@@ -201,8 +197,8 @@ def create_interface() -> gr.Blocks:
|
|
201 |
|
202 |
### How to Use
|
203 |
1. Select a company from the dropdown menu
|
204 |
-
2. Click 'Generate ESG Analysis' to view the
|
205 |
-
3.
|
206 |
|
207 |
### Metrics Explained
|
208 |
- **Environmental Score**: Measures company's environmental impact and sustainability initiatives
|
@@ -214,4 +210,4 @@ def create_interface() -> gr.Blocks:
|
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
app = create_interface()
|
217 |
-
app.launch(share=True, debug=True)
|
|
|
21 |
"Netflix": "NFLX"
|
22 |
}
|
23 |
|
24 |
+
def create_line_plot(df: pd.DataFrame) -> go.Figure:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
"""Create a line plot using plotly"""
|
26 |
fig = go.Figure()
|
27 |
fig.add_trace(go.Scatter(
|
|
|
36 |
yaxis_title="Score",
|
37 |
yaxis_range=[0, 100]
|
38 |
)
|
39 |
+
return fig
|
40 |
|
41 |
+
def create_scatter_plot(df: pd.DataFrame) -> go.Figure:
|
42 |
"""Create a scatter plot using plotly"""
|
43 |
fig = go.Figure()
|
44 |
fig.add_trace(go.Scatter(
|
|
|
54 |
yaxis_title="Score",
|
55 |
yaxis_range=[0, 100]
|
56 |
)
|
57 |
+
return fig
|
58 |
|
59 |
+
def create_bar_plot(df: pd.DataFrame) -> go.Figure:
|
60 |
"""Create a bar plot using plotly"""
|
61 |
fig = go.Figure()
|
62 |
fig.add_trace(go.Bar(
|
|
|
70 |
yaxis_title="Score",
|
71 |
yaxis_range=[0, 100]
|
72 |
)
|
73 |
+
return fig
|
74 |
+
|
75 |
+
def fetch_esg_data(company_name: str) -> Tuple[Optional[str], str]:
|
76 |
+
"""
|
77 |
+
Fetch and process ESG data for the selected company.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
company_name (str): Name of the company to fetch ESG data for
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
Tuple containing:
|
84 |
+
- DataFrame with processed data
|
85 |
+
- Status message
|
86 |
+
"""
|
87 |
+
try:
|
88 |
+
# Get the ticker symbol
|
89 |
+
ticker = COMPANY_DICT[company_name]
|
90 |
+
logger.info(f"Fetching ESG data for {company_name} ({ticker})")
|
91 |
+
|
92 |
+
# Fetch ESG data
|
93 |
+
stock = yf.Ticker(ticker)
|
94 |
+
esg_data = stock.sustainability
|
95 |
+
|
96 |
+
if esg_data is None:
|
97 |
+
return None, f"No ESG data available for {company_name}"
|
98 |
+
|
99 |
+
# Process ESG data
|
100 |
+
esg_df = pd.DataFrame(esg_data)
|
101 |
+
esg_scores = esg_df.loc[["environmentScore", "socialScore", "governanceScore"], :].dropna().astype(float)
|
102 |
+
|
103 |
+
# Create plotting DataFrame
|
104 |
+
plot_df = pd.DataFrame({
|
105 |
+
"ESG Category": ["Environment", "Social", "Governance"],
|
106 |
+
"Score": esg_scores.squeeze().values
|
107 |
+
})
|
108 |
+
|
109 |
+
# Save to CSV
|
110 |
+
csv_filename = f"{ticker}_esg_data.csv"
|
111 |
+
esg_df.to_csv(csv_filename)
|
112 |
+
|
113 |
+
return plot_df, f"Successfully fetched ESG data for {company_name}"
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
logger.error(f"Error fetching ESG data: {str(e)}")
|
117 |
+
return None, f"Error fetching ESG data: {str(e)}"
|
118 |
|
119 |
def create_interface() -> gr.Blocks:
|
120 |
"""Create the Gradio interface"""
|
|
|
131 |
value="Apple"
|
132 |
)
|
133 |
plot_button = gr.Button("Generate ESG Analysis", variant="primary")
|
134 |
+
status_message = gr.Textbox(
|
135 |
+
label="Status",
|
136 |
+
interactive=False,
|
137 |
+
visible=True
|
138 |
+
)
|
139 |
|
140 |
with gr.Row():
|
141 |
with gr.Column():
|
142 |
+
plot = gr.Plot(label="ESG Scores Analysis")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
+
def process_esg_request(company_name: str) -> Tuple[go.Figure, str]:
|
145 |
+
# Fetch the data
|
146 |
+
plot_df, status = fetch_esg_data(company_name)
|
147 |
+
|
148 |
+
if plot_df is None:
|
149 |
+
# Create an empty figure with an error message
|
150 |
+
fig = go.Figure()
|
151 |
+
fig.add_annotation(
|
152 |
+
text=status,
|
153 |
+
xref="paper",
|
154 |
+
yref="paper",
|
155 |
+
x=0.5,
|
156 |
+
y=0.5,
|
157 |
+
showarrow=False
|
|
|
|
|
|
|
|
|
|
|
158 |
)
|
159 |
+
return fig, status
|
160 |
+
|
161 |
+
# Create a combined figure with subplots
|
162 |
+
fig = go.Figure()
|
163 |
+
|
164 |
+
# Add bar chart
|
165 |
+
fig.add_trace(go.Bar(
|
166 |
+
x=plot_df["ESG Category"],
|
167 |
+
y=plot_df["Score"],
|
168 |
+
name="Score",
|
169 |
+
marker_color="rgb(55, 83, 109)"
|
170 |
+
))
|
171 |
+
|
172 |
+
# Update layout
|
173 |
+
fig.update_layout(
|
174 |
+
title=f"ESG Analysis for {company_name}",
|
175 |
+
xaxis_title="ESG Category",
|
176 |
+
yaxis_title="Score",
|
177 |
+
yaxis_range=[0, 100],
|
178 |
+
showlegend=True,
|
179 |
+
height=500
|
180 |
+
)
|
181 |
+
|
182 |
+
return fig, status
|
183 |
|
184 |
# Connect the button click to the process function
|
185 |
plot_button.click(
|
186 |
+
fn=process_esg_request,
|
187 |
inputs=company,
|
188 |
+
outputs=[plot, status_message],
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
api_name="generate_esg_analysis"
|
190 |
)
|
191 |
|
|
|
197 |
|
198 |
### How to Use
|
199 |
1. Select a company from the dropdown menu
|
200 |
+
2. Click 'Generate ESG Analysis' to view the visualization
|
201 |
+
3. The plot shows the Environmental, Social, and Governance scores for the selected company
|
202 |
|
203 |
### Metrics Explained
|
204 |
- **Environmental Score**: Measures company's environmental impact and sustainability initiatives
|
|
|
210 |
|
211 |
if __name__ == "__main__":
|
212 |
app = create_interface()
|
213 |
+
app.launch(share=True, debug=True)
|