|
import pickle
|
|
import tensorflow
|
|
import numpy as np
|
|
from numpy.linalg import norm
|
|
from tensorflow.keras.preprocessing import image
|
|
from tensorflow.keras.layers import GlobalMaxPooling2D
|
|
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input
|
|
from sklearn.neighbors import NearestNeighbors
|
|
import cv2
|
|
|
|
feature_list = np.array(pickle.load(open('embeddings.pkl','rb')))
|
|
filenames = pickle.load(open('filenames.pkl','rb'))
|
|
|
|
model = ResNet50(weights='imagenet',include_top=False,input_shape=(224,224,3))
|
|
model.trainable = False
|
|
|
|
model = tensorflow.keras.Sequential([
|
|
model,
|
|
GlobalMaxPooling2D()
|
|
])
|
|
|
|
img = image.load_img('sample/i4.jpg',target_size=(224,224))
|
|
img_array = image.img_to_array(img)
|
|
expanded_img_array = np.expand_dims(img_array, axis=0)
|
|
preprocessed_img = preprocess_input(expanded_img_array)
|
|
result = model.predict(preprocessed_img).flatten()
|
|
normalized_result = result / norm(result)
|
|
|
|
neighbors = NearestNeighbors(n_neighbors=5,algorithm='brute',metric='euclidean')
|
|
neighbors.fit(feature_list)
|
|
|
|
distances,indices = neighbors.kneighbors([normalized_result])
|
|
|
|
print(indices)
|
|
|
|
for file in indices[0][0:5]:
|
|
temp_img = cv2.imread(filenames[file])
|
|
cv2.imshow('output',cv2.resize(temp_img,(512,512)))
|
|
cv2.waitKey(0)
|
|
|
|
distances,indices = neighbors.kneighbors([normalized_result])
|
|
|
|
print(indices) |