Manasa B Rao
commited on
Delete test.py
Browse files
test.py
DELETED
@@ -1,43 +0,0 @@
|
|
1 |
-
import pickle
|
2 |
-
import tensorflow
|
3 |
-
import numpy as np
|
4 |
-
from numpy.linalg import norm
|
5 |
-
from tensorflow.keras.preprocessing import image
|
6 |
-
from tensorflow.keras.layers import GlobalMaxPooling2D
|
7 |
-
from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input
|
8 |
-
from sklearn.neighbors import NearestNeighbors
|
9 |
-
import cv2
|
10 |
-
|
11 |
-
feature_list = np.array(pickle.load(open('embeddings.pkl','rb')))
|
12 |
-
filenames = pickle.load(open('filenames.pkl','rb'))
|
13 |
-
|
14 |
-
model = ResNet50(weights='imagenet',include_top=False,input_shape=(224,224,3))
|
15 |
-
model.trainable = False
|
16 |
-
|
17 |
-
model = tensorflow.keras.Sequential([
|
18 |
-
model,
|
19 |
-
GlobalMaxPooling2D()
|
20 |
-
])
|
21 |
-
|
22 |
-
img = image.load_img('sample/i4.jpg',target_size=(224,224))
|
23 |
-
img_array = image.img_to_array(img)
|
24 |
-
expanded_img_array = np.expand_dims(img_array, axis=0)
|
25 |
-
preprocessed_img = preprocess_input(expanded_img_array)
|
26 |
-
result = model.predict(preprocessed_img).flatten()
|
27 |
-
normalized_result = result / norm(result)
|
28 |
-
|
29 |
-
neighbors = NearestNeighbors(n_neighbors=5,algorithm='brute',metric='euclidean')
|
30 |
-
neighbors.fit(feature_list)
|
31 |
-
|
32 |
-
distances,indices = neighbors.kneighbors([normalized_result])
|
33 |
-
|
34 |
-
print(indices)
|
35 |
-
|
36 |
-
for file in indices[0][0:5]:
|
37 |
-
temp_img = cv2.imread(filenames[file])
|
38 |
-
cv2.imshow('output',cv2.resize(temp_img,(512,512)))
|
39 |
-
cv2.waitKey(0)
|
40 |
-
|
41 |
-
distances,indices = neighbors.kneighbors([normalized_result])
|
42 |
-
|
43 |
-
print(indices)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|