Spaces:
Sleeping
Sleeping
import os | |
from PyPDF2 import PdfReader | |
import pandas as pd | |
from dotenv import load_dotenv | |
import groq | |
import json | |
from datetime import datetime | |
from sklearn.decomposition import NMF | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
class TweetDatasetProcessor: | |
def __init__(self): | |
load_dotenv() | |
self.groq_client = groq.Groq(api_key=os.getenv('Groq_api')) | |
self.tweets = [] | |
self.personality_profile = {} | |
def extract_text_from_pdf(self, pdf_path): | |
"""Extract text content from PDF file""" | |
reader = PdfReader(pdf_path) | |
text = "" | |
for page in reader.pages: | |
text += page.extract_text() | |
return text | |
def process_pdf_content(self, text): | |
"""Process PDF content and extract tweets with metadata""" | |
lines = text.split('\n') | |
for line in lines: | |
if line.strip(): | |
self.tweets.append({ | |
'content': line.strip(), | |
'timestamp': self._extract_timestamp(line) if self._extract_timestamp(line) else datetime.now(), | |
'mentions': self._extract_mentions(line), | |
'hashtags': self._extract_hashtags(line) | |
}) | |
df = pd.DataFrame(self.tweets) | |
df.to_csv('processed_tweets.csv', index=False) | |
return df | |
def _extract_timestamp(self, text): | |
"""Extract timestamp if present in tweet""" | |
return None # Implement timestamp extraction logic if needed | |
def _extract_mentions(self, text): | |
"""Extract mentioned users from tweet""" | |
return [word for word in text.split() if word.startswith('@')] | |
def _extract_hashtags(self, text): | |
"""Extract hashtags from tweet""" | |
return [word for word in text.split() if word.startswith('#')] | |
def analyze_personality(self): | |
"""Comprehensive personality analysis""" | |
all_tweets = [tweet['content'] for tweet in self.tweets] | |
analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets. Analyze: | |
Core beliefs, emotional tendencies, cognitive patterns, etc. | |
Tweets for analysis: | |
{json.dumps(all_tweets[:30], indent=2)} | |
""" | |
response = self.groq_client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are an expert psychologist."}, | |
{"role": "user", "content": analysis_prompt}, | |
], | |
model="mixtral-8x7b-32768", | |
temperature=0.1, | |
) | |
self.personality_profile = response.choices[0].message.content | |
return self.personality_profile | |
def analyze_topics(self, n_topics=5): | |
"""Extract and identify different topics the author has tweeted about""" | |
all_tweets = [tweet['content'] for tweet in self.tweets] | |
vectorizer = TfidfVectorizer(stop_words='english') | |
tfidf_matrix = vectorizer.fit_transform(all_tweets) | |
nmf_model = NMF(n_components=n_topics, random_state=1) | |
nmf_model.fit(tfidf_matrix) | |
topics = [] | |
for topic_idx, topic in enumerate(nmf_model.components_): | |
topic_words = [vectorizer.get_feature_names_out()[i] for i in topic.argsort()[:-n_topics - 1:-1]] | |
topics.append(" ".join(topic_words)) | |
return topics | |
def generate_tweet(self, context=""): | |
"""Generate a new tweet based on personality profile and optional context""" | |
additional_contexts = [ | |
"Comment on a recent technological advancement.", | |
"Share a motivational thought.", | |
"Discuss a current trending topic.", | |
"Reflect on a past experience.", | |
"Provide advice to followers." | |
] | |
# Include historical topics in the context | |
historical_topics = self.analyze_topics() | |
additional_contexts.extend(historical_topics) | |
# Randomly choose an additional context to diversify tweets | |
import random | |
random_context = random.choice(additional_contexts) | |
generation_prompt = f"""Based on this personality profile: | |
{self.personality_profile} | |
Current context or topic (if any): | |
{context} | |
Additionally, consider this specific context: | |
{random_context} | |
Generate a tweet that this person would write right now.""" | |
response = self.groq_client.chat.completions.create( | |
messages=[ | |
{"role": "system", "content": "You are an expert in replicating writing patterns."}, | |
{"role": "user", "content": generation_prompt}, | |
], | |
model="mixtral-8x7b-32768", | |
temperature=0.8, | |
max_tokens=150, | |
) | |
return response.choices[0].message.content | |