Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +100 -0
- requirements.txt +12 -0
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dotenv import load_dotenv
|
2 |
+
import streamlit as st
|
3 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
4 |
+
from langchain_text_splitters.character import CharacterTextSplitter
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_groq import ChatGroq
|
8 |
+
from langchain.memory import ConversationBufferMemory
|
9 |
+
from langchain.chains import ConversationalRetrievalChain
|
10 |
+
import os
|
11 |
+
import nltk
|
12 |
+
nltk.download('punkt')
|
13 |
+
|
14 |
+
# Load secret API key
|
15 |
+
secret = os.getenv('Groq_api')
|
16 |
+
working_dir = os.path.dirname(os.path.abspath(__file__))
|
17 |
+
|
18 |
+
def load_documents(file_path):
|
19 |
+
loader = UnstructuredPDFLoader(file_path)
|
20 |
+
documents = loader.load()
|
21 |
+
return documents
|
22 |
+
|
23 |
+
def setup_vectorstore(documents):
|
24 |
+
embeddings = HuggingFaceEmbeddings()
|
25 |
+
text_splitter = CharacterTextSplitter(
|
26 |
+
separator="\n",
|
27 |
+
chunk_size=500,
|
28 |
+
chunk_overlap=100
|
29 |
+
)
|
30 |
+
doc_chunks = text_splitter.split_documents(documents)
|
31 |
+
vectorstores = FAISS.from_documents(doc_chunks, embeddings)
|
32 |
+
return vectorstores
|
33 |
+
|
34 |
+
def create_chain(vectorstores):
|
35 |
+
llm = ChatGroq(
|
36 |
+
api_key=secret,
|
37 |
+
model="llama-3.1-70b-versatile",
|
38 |
+
temperature=0.7 # Slightly higher for more natural, expressive language
|
39 |
+
)
|
40 |
+
retriever = vectorstores.as_retriever()
|
41 |
+
memory = ConversationBufferMemory(
|
42 |
+
llm=llm,
|
43 |
+
output_key="answer",
|
44 |
+
memory_key="chat_history",
|
45 |
+
return_messages=True
|
46 |
+
)
|
47 |
+
chain = ConversationalRetrievalChain.from_llm(
|
48 |
+
llm=llm,
|
49 |
+
retriever=retriever,
|
50 |
+
memory=memory,
|
51 |
+
verbose=True
|
52 |
+
)
|
53 |
+
return chain
|
54 |
+
|
55 |
+
# Streamlit setup
|
56 |
+
st.set_page_config(
|
57 |
+
page_title="Chat with your documents",
|
58 |
+
page_icon="📑",
|
59 |
+
layout="centered"
|
60 |
+
)
|
61 |
+
|
62 |
+
st.title("📝Chat With Your Docs 😎")
|
63 |
+
|
64 |
+
if "chat_history" not in st.session_state:
|
65 |
+
st.session_state.chat_history = []
|
66 |
+
|
67 |
+
uploaded_file = st.file_uploader(label="Upload your PDF")
|
68 |
+
|
69 |
+
if uploaded_file:
|
70 |
+
file_path = f"{working_dir}/{uploaded_file.name}"
|
71 |
+
with open(file_path, "wb") as f:
|
72 |
+
f.write(uploaded_file.getbuffer())
|
73 |
+
|
74 |
+
# Load and process the PDF document
|
75 |
+
if "vectorstores" not in st.session_state:
|
76 |
+
st.session_state.vectorstores = setup_vectorstore(load_documents(file_path))
|
77 |
+
|
78 |
+
# Create the conversational chain with style adaptation
|
79 |
+
if "conversation_chain" not in st.session_state:
|
80 |
+
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores)
|
81 |
+
|
82 |
+
for message in st.session_state.chat_history:
|
83 |
+
with st.chat_message(message["role"]):
|
84 |
+
st.markdown(message["content"])
|
85 |
+
|
86 |
+
user_input = st.chat_input("Ask any questions relevant to uploaded PDF")
|
87 |
+
|
88 |
+
if user_input:
|
89 |
+
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
90 |
+
with st.chat_message("user"):
|
91 |
+
st.markdown(user_input)
|
92 |
+
|
93 |
+
# Add prompt for style adaptation
|
94 |
+
style_prompt = f"Answer in a similar style as the person in the document: {user_input}"
|
95 |
+
response = st.session_state.conversation_chain({"question": style_prompt})
|
96 |
+
|
97 |
+
assistant_response = response["answer"]
|
98 |
+
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
99 |
+
with st.chat_message("assistant"):
|
100 |
+
st.markdown(assistant_response)
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
python-dotenv==1.0.1
|
2 |
+
streamlit==1.37.0
|
3 |
+
langchain-community==0.2.10
|
4 |
+
langchain-text-splitters==0.2.2
|
5 |
+
langchain-groq==0.1.9
|
6 |
+
unstructured
|
7 |
+
unstructured[pdf]
|
8 |
+
faiss-cpu
|
9 |
+
transformers==4.43.3
|
10 |
+
sentence-transformers==3.0.1
|
11 |
+
nltk==3.9.1
|
12 |
+
pi_heif
|