Manasa1 commited on
Commit
5681122
·
verified ·
1 Parent(s): 9d28e7f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +102 -43
app.py CHANGED
@@ -1,63 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
 
 
 
 
 
 
 
 
 
 
26
  messages.append({"role": "user", "content": message})
 
27
 
28
  response = ""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
- respond,
47
  additional_inputs=[
48
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
  ],
 
 
59
  )
60
 
61
-
62
  if __name__ == "__main__":
63
  demo.launch()
 
1
+ from transformers import GPT2LMHeadModel, GPT2Tokenizer
2
+
3
+ def load_llm():
4
+ """
5
+ Loads the GPT-2 model and tokenizer using the Hugging Face `transformers` library.
6
+ """
7
+ try:
8
+ # Load pre-trained model and tokenizer from Hugging Face
9
+ print("Downloading or loading the GPT-2 model and tokenizer...")
10
+ model_name = 'gpt2'
11
+ model = GPT2LMHeadModel.from_pretrained(model_name)
12
+ tokenizer = GPT2Tokenizer.from_pretrained(model_name)
13
+ print("Model and tokenizer successfully loaded!")
14
+ return model, tokenizer
15
+
16
+ except Exception as e:
17
+ print(f"An error occurred while loading the model: {e}")
18
+ return None, None
19
+
20
+ def generate_response(model, tokenizer, user_input):
21
+ """
22
+ Generates a response using the GPT-2 model and tokenizer.
23
+
24
+ Args:
25
+ - model: The loaded GPT-2 model.
26
+ - tokenizer: The tokenizer corresponding to the GPT-2 model.
27
+ - user_input (str): The input question from the user.
28
+
29
+ Returns:
30
+ - response (str): The generated response.
31
+ """
32
+ try:
33
+ inputs = tokenizer.encode(user_input, return_tensors='pt')
34
+ outputs = model.generate(inputs, max_length=512, num_return_sequences=1)
35
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
36
+ return response
37
+
38
+ except Exception as e:
39
+ return f"An error occurred during response generation: {e}"
40
+
41
+ # Load the model and tokenizer
42
+ model, tokenizer = load_llm()
43
+
44
+ if model is None or tokenizer is None:
45
+ print("Model and/or tokenizer loading failed.")
46
+ else:
47
+ print("Model and tokenizer are ready for use.")
48
+
49
  import gradio as gr
50
  from huggingface_hub import InferenceClient
51
 
52
+ # Initialize the Hugging Face API client
53
+ # The InferenceClient does not take an api_key argument
54
+ client = InferenceClient()
 
55
 
56
+ def retrieval_QA_chain(llm, prompt, db):
57
+ # Placeholder function - ensure it integrates as needed
58
+ return RetrievalQA.from_chain_type(
59
+ llm=llm,
60
+ chain_type="stuff",
61
+ retriever=db.as_retriever(search_kwargs={'k': 2}),
62
+ return_source_documents=True,
63
+ chain_type_kwargs={'prompt': prompt}
64
+ )
65
 
66
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
67
+ """
68
+ Handles interaction with the chatbot by sending the conversation history
69
+ and system message to the Hugging Face Inference API.
70
+ """
71
+ print("Starting respond function")
72
+ print("Received message:", message)
73
+ print("Conversation history:", history)
 
 
 
 
 
 
 
74
 
75
+ messages = [{"role": "system", "content": system_message}]
76
+
77
+ for user_msg, assistant_msg in history:
78
+ if user_msg:
79
+ print("Adding user message to messages:", user_msg)
80
+ messages.append({"role": "user", "content": user_msg})
81
+ if assistant_msg:
82
+ print("Adding assistant message to messages:", assistant_msg)
83
+ messages.append({"role": "assistant", "content": assistant_msg})
84
+
85
  messages.append({"role": "user", "content": message})
86
+ print("Final message list for the model:", messages)
87
 
88
  response = ""
89
+ try:
90
+ for message in client.chat_completion(
91
+ messages,
92
+ max_tokens=max_tokens,
93
+ stream=True,
94
+ temperature=temperature,
95
+ top_p=top_p,
96
+ ):
97
+ token = message['choices'][0]['delta']['content']
98
+ response += token
99
+ print("Token received:", token)
100
+ yield response
101
+ except Exception as e:
102
+ print("An error occurred:", e)
103
+ yield f"An error occurred: {e}"
104
 
105
+ print("Response generation completed")
106
+
107
+ # Set up the Gradio ChatInterface
 
 
 
 
 
 
 
 
 
 
 
 
108
  demo = gr.ChatInterface(
109
+ fn=respond,
110
  additional_inputs=[
111
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
112
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
113
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
114
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
115
  ],
116
+ title="Human Rights AI Chatbot",
117
+ description="Ask questions about human rights, and get informed, passionate answers!"
118
  )
119
 
120
+ # Launch the Gradio app
121
  if __name__ == "__main__":
122
  demo.launch()