Spaces:
Sleeping
Sleeping
from dotenv import load_dotenv | |
import streamlit as st | |
from langchain_community.document_loaders import UnstructuredPDFLoader | |
from langchain_text_splitters.character import CharacterTextSplitter | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_groq import ChatGroq | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
import os | |
import nltk | |
nltk.download('punkt_tab') | |
nltk.download('averaged_perceptron_tagger_eng') | |
# Install Poppler and Tesseract in the runtime environment | |
os.system("apt-get update && apt-get install -y poppler-utils tesseract-ocr") | |
secret = os.getenv('Groq_api') | |
working_dir = os.path.dirname(os.path.abspath(__file__)) | |
def load_documents(file_path): | |
# Specify poppler_path and tesseract_path to ensure compatibility | |
loader = UnstructuredPDFLoader( | |
file_path, | |
poppler_path="/usr/bin", | |
tesseract_path="/usr/bin/tesseract" | |
) | |
documents = loader.load() | |
return documents | |
def setup_vectorstore(documents): | |
embeddings = HuggingFaceEmbeddings() | |
text_splitter = CharacterTextSplitter( | |
separator="/n", | |
chunk_size=1000, | |
chunk_overlap=200 | |
) | |
doc_chunks = text_splitter.split_documents(documents) | |
vectorstores = FAISS.from_documents(doc_chunks, embeddings) | |
return vectorstores | |
def create_chain(vectorstores): | |
llm = ChatGroq( | |
api_key=secret, | |
model="deepseek-r1-distill-llama-70b", | |
temperature=0 | |
) | |
retriever = vectorstores.as_retriever() | |
memory = ConversationBufferMemory( | |
llm=llm, | |
output_key="answer", | |
memory_key="chat_history", | |
return_messages=True | |
) | |
chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=retriever, | |
memory=memory, | |
verbose=True | |
) | |
return chain | |
# Streamlit page configuration | |
st.set_page_config( | |
page_title="Chat with your documents", | |
page_icon="π", | |
layout="centered" | |
) | |
st.title("πChat With your docs π") | |
# Initialize session states | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = [] | |
uploaded_file = st.file_uploader(label="Upload your PDF") | |
if uploaded_file: | |
file_path = f"{working_dir}/{uploaded_file.name}" | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
if "vectorstores" not in st.session_state: | |
st.session_state.vectorstores = setup_vectorstore(load_documents(file_path)) | |
if "conversation_chain" not in st.session_state: | |
st.session_state.conversation_chain = create_chain(st.session_state.vectorstores) | |
# Display chat history | |
for message in st.session_state.chat_history: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# User input handling | |
user_input = st.chat_input("Ask any questions relevant to uploaded pdf") | |
if user_input: | |
st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
with st.chat_message("user"): | |
st.markdown(user_input) | |
with st.chat_message("assistant"): | |
response = st.session_state.conversation_chain({"question": user_input}) | |
assistant_response = response["answer"] | |
st.markdown(assistant_response) | |
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) | |