File size: 1,724 Bytes
bb74076
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import gradio as gr
from phi.agent import Agent
from phi.model.groq import Groq
from phi.tools.duckduckgo import DuckDuckGo
from phi.tools.newspaper4k import Newspaper4k
import os
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Access the Groq API key
groq_api_key = os.getenv("GROQ_API_KEY")

# Create the agent
agent = Agent(
    model=Groq(id="llama-3.3-70b-versatile", api_key=groq_api_key),
    tools=[DuckDuckGo(), Newspaper4k()],
    description="You are a senior NYT researcher writing an article on a topic.",
    instructions=[
        "For a given topic, search for the top 5 links.",
        "Then read each URL and extract the article text, if a URL isn't available, ignore it.",
        "Analyse and prepare an NYT worthy article based on the information.",
    ],
    markdown=True,
    show_tool_calls=True,
    add_datetime_to_instructions=True,
)

# Function to process input and generate an article
def generate_article(topic):
    response = agent.get_response(topic)
    return response

# Gradio interface
with gr.Blocks() as app:
    gr.Markdown("# 📰 NYT-Style Article Generator")
    gr.Markdown(
        "Enter a topic below, and the app will generate an NYT-style article by searching, extracting, and summarizing information from the web."
    )
    
    with gr.Row():
        topic_input = gr.Textbox(
            label="Enter Topic", placeholder="e.g., Simulation Theory", lines=1
        )
        generate_button = gr.Button("Generate Article")
    
    output_text = gr.Markdown(label="Generated Article")
    
    generate_button.click(fn=generate_article, inputs=topic_input, outputs=output_text)

# Run the app
if __name__ == "__main__":
    app.launch()