Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from langchain.llms import CTransformers
|
5 |
from langchain.chains import RetrievalQA
|
6 |
-
import
|
7 |
|
8 |
DB_FAISS_PATH = "vectorstores/db_faiss"
|
9 |
|
@@ -18,74 +18,58 @@ Helpful answer:
|
|
18 |
"""
|
19 |
|
20 |
def set_custom_prompt():
|
21 |
-
|
22 |
-
Prompt template for QA retrieval for each vectorstore
|
23 |
-
"""
|
24 |
-
prompt = PromptTemplate(template=custom_prompt_template,
|
25 |
-
input_variables=['context', 'question'])
|
26 |
return prompt
|
27 |
|
28 |
-
|
29 |
def load_llm():
|
30 |
-
"""
|
31 |
-
Load the language model
|
32 |
-
"""
|
33 |
llm = CTransformers(
|
34 |
model="C:/Users/sanath/Downloads/llama-2-7b-chat.ggmlv3.q8_0.bin",
|
35 |
-
model_type
|
36 |
-
max_new_tokens
|
37 |
-
temperature
|
38 |
)
|
39 |
return llm
|
40 |
|
41 |
-
def retrieval_QA_chain(llm,prompt,db):
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
return qachain
|
51 |
-
|
52 |
|
53 |
def qa_bot():
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
def final_result(query):
|
62 |
-
qa_result = qa_bot()
|
63 |
-
response = qa_result({'query':query})
|
64 |
-
return response
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
chain = cl.user_session.get("chain")
|
79 |
-
cb = cl.AsyncLangchainCallbackHandler(
|
80 |
-
stream_final_answer = True, answer_prefix_tokens = ["FINAL","ANSWER"]
|
81 |
-
)
|
82 |
-
cb.answer_reached = True
|
83 |
-
res = await chain.acall(message, callbacks=[cb])
|
84 |
-
answer = res["result"]
|
85 |
-
sources = res["source_documents"]
|
86 |
-
if sources:
|
87 |
-
answer += f"\nSources:" + str(sources)
|
88 |
-
else:
|
89 |
-
answer += "\nNo sources found"
|
90 |
-
|
91 |
-
await cl.Message(content=answer).send()
|
|
|
3 |
from langchain.vectorstores import FAISS
|
4 |
from langchain.llms import CTransformers
|
5 |
from langchain.chains import RetrievalQA
|
6 |
+
import gradio as gr
|
7 |
|
8 |
DB_FAISS_PATH = "vectorstores/db_faiss"
|
9 |
|
|
|
18 |
"""
|
19 |
|
20 |
def set_custom_prompt():
|
21 |
+
prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question'])
|
|
|
|
|
|
|
|
|
22 |
return prompt
|
23 |
|
|
|
24 |
def load_llm():
|
|
|
|
|
|
|
25 |
llm = CTransformers(
|
26 |
model="C:/Users/sanath/Downloads/llama-2-7b-chat.ggmlv3.q8_0.bin",
|
27 |
+
model_type="llama",
|
28 |
+
max_new_tokens=512,
|
29 |
+
temperature=0.5
|
30 |
)
|
31 |
return llm
|
32 |
|
33 |
+
def retrieval_QA_chain(llm, prompt, db):
|
34 |
+
qachain = RetrievalQA.from_chain_type(
|
35 |
+
llm=llm,
|
36 |
+
chain_type="stuff",
|
37 |
+
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
38 |
+
return_source_documents=True,
|
39 |
+
chain_type_kwargs={'prompt': prompt}
|
40 |
+
)
|
41 |
+
return qachain
|
|
|
|
|
42 |
|
43 |
def qa_bot():
|
44 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-miniLM-L6-V2', model_kwargs={'device': 'cpu'})
|
45 |
+
db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
|
46 |
+
llm = load_llm()
|
47 |
+
qa_prompt = set_custom_prompt()
|
48 |
+
qa = retrieval_QA_chain(llm, qa_prompt, db)
|
49 |
+
return qa
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
def chatbot_response(query):
|
52 |
+
try:
|
53 |
+
qa = qa_bot()
|
54 |
+
response = qa({'query': query})
|
55 |
+
answer = response["result"]
|
56 |
+
sources = response["source_documents"]
|
57 |
+
if sources:
|
58 |
+
answer += f"\nSources:" + str(sources)
|
59 |
+
else:
|
60 |
+
answer += "\nNo sources found"
|
61 |
+
return answer
|
62 |
+
except Exception as e:
|
63 |
+
return f"An error occurred: {str(e)}"
|
64 |
|
65 |
+
# Create a Gradio interface with updated API
|
66 |
+
iface = gr.Interface(
|
67 |
+
fn=chatbot_response,
|
68 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your question..."),
|
69 |
+
outputs="text",
|
70 |
+
title="Medical Chatbot",
|
71 |
+
description="Ask a medical question and get answers based on the provided context."
|
72 |
+
)
|
73 |
|
74 |
+
# Launch the Gradio app
|
75 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|