Manasa1 commited on
Commit
03864fe
·
verified ·
1 Parent(s): f321fb1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -19
app.py CHANGED
@@ -1,16 +1,24 @@
1
- from langchain import PromptTemplate
2
- from langchain.embeddings import HuggingFaceEmbeddings
3
- from langchain.vectorstores import FAISS
4
- from langchain.llms import CTransformers
5
  from langchain.chains import RetrievalQA
6
  import gradio as gr
7
- from transformers import AutoTokenizer, AutoModelForCausalLM
8
  from huggingface_hub import hf_hub_download
9
-
10
-
11
 
12
  DB_FAISS_PATH = "vectorstores/db_faiss"
13
 
 
 
 
 
 
 
 
 
 
 
 
14
  custom_prompt_template = """Use the following pieces of information to answer the user's question.
15
  If you don't know the answer, just say that you don't know, don't try to make up an answer.
16
 
@@ -25,15 +33,6 @@ def set_custom_prompt():
25
  prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question'])
26
  return prompt
27
 
28
- def load_llm():
29
- llm = CTransformers(
30
- model=model,
31
- model_type="llama",
32
- max_new_tokens=512,
33
- temperature=0.5
34
- )
35
- return llm
36
-
37
  def retrieval_QA_chain(llm, prompt, db):
38
  qachain = RetrievalQA.from_chain_type(
39
  llm=llm,
@@ -66,14 +65,14 @@ def chatbot_response(query):
66
  except Exception as e:
67
  return f"An error occurred: {str(e)}"
68
 
69
- # Create a Gradio interface with updated API
70
  iface = gr.Interface(
71
  fn=chatbot_response,
72
  inputs=gr.Textbox(lines=2, placeholder="Enter your question..."),
73
  outputs="text",
74
  title="Medical Chatbot",
75
- description="Ask a medical question and get answers based on the provided context."
 
76
  )
77
 
78
- # Launch the Gradio app
79
  iface.launch()
 
 
1
+ from langchain_huggingface import HuggingFaceEmbeddings
2
+ from langchain_community.vectorstores import FAISS
3
+ from langchain_community.llms import CTransformers
 
4
  from langchain.chains import RetrievalQA
5
  import gradio as gr
 
6
  from huggingface_hub import hf_hub_download
7
+ import os
 
8
 
9
  DB_FAISS_PATH = "vectorstores/db_faiss"
10
 
11
+ def load_llm():
12
+ model_name = 'TheBloke/Llama-2-7B-Chat-GGML' # Replace with the actual model repository name
13
+ model_path = hf_hub_download(repo_id=model_name, filename='pytorch_model.bin', cache_dir='./models')
14
+ llm = CTransformers(
15
+ model=model_path,
16
+ model_type="llama",
17
+ max_new_tokens=512,
18
+ temperature=0.5
19
+ )
20
+ return llm
21
+
22
  custom_prompt_template = """Use the following pieces of information to answer the user's question.
23
  If you don't know the answer, just say that you don't know, don't try to make up an answer.
24
 
 
33
  prompt = PromptTemplate(template=custom_prompt_template, input_variables=['context', 'question'])
34
  return prompt
35
 
 
 
 
 
 
 
 
 
 
36
  def retrieval_QA_chain(llm, prompt, db):
37
  qachain = RetrievalQA.from_chain_type(
38
  llm=llm,
 
65
  except Exception as e:
66
  return f"An error occurred: {str(e)}"
67
 
 
68
  iface = gr.Interface(
69
  fn=chatbot_response,
70
  inputs=gr.Textbox(lines=2, placeholder="Enter your question..."),
71
  outputs="text",
72
  title="Medical Chatbot",
73
+ description="Ask a medical question and get answers based on the provided context.",
74
+ live=True
75
  )
76
 
 
77
  iface.launch()
78
+