Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain import PromptTemplate
|
| 2 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
| 3 |
+
from langchain.vectorstores import FAISS
|
| 4 |
+
from langchain.llms import CTransformers
|
| 5 |
+
from langchain.chains import RetrievalQA
|
| 6 |
+
import chainlit as cl
|
| 7 |
+
|
| 8 |
+
DB_FAISS_PATH = "vectorstores/db_faiss"
|
| 9 |
+
|
| 10 |
+
custom_prompt_template = """Use the following pieces of information to answer the user's question.
|
| 11 |
+
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 12 |
+
|
| 13 |
+
Context: {context}
|
| 14 |
+
Question: {question}
|
| 15 |
+
|
| 16 |
+
only return the helpful answer below and nothing else.
|
| 17 |
+
Helpful answer:
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
def set_custom_prompt():
|
| 21 |
+
"""
|
| 22 |
+
Prompt template for QA retrieval for each vectorstore
|
| 23 |
+
"""
|
| 24 |
+
prompt = PromptTemplate(template=custom_prompt_template,
|
| 25 |
+
input_variables=['context', 'question'])
|
| 26 |
+
return prompt
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def load_llm():
|
| 30 |
+
"""
|
| 31 |
+
Load the language model
|
| 32 |
+
"""
|
| 33 |
+
llm = CTransformers(
|
| 34 |
+
model="C:/Users/sanath/Downloads/llama-2-7b-chat.ggmlv3.q8_0.bin",
|
| 35 |
+
model_type = "llama",
|
| 36 |
+
max_new_tokens = 512,
|
| 37 |
+
temperature = 0.5
|
| 38 |
+
)
|
| 39 |
+
return llm
|
| 40 |
+
|
| 41 |
+
def retrieval_QA_chain(llm,prompt,db):
|
| 42 |
+
qachain = RetrievalQA.from_chain_type(
|
| 43 |
+
llm=llm,
|
| 44 |
+
chain_type="stuff",
|
| 45 |
+
retriever=db.as_retriever(search_kwargs={'k':2}),
|
| 46 |
+
return_source_documents=True,
|
| 47 |
+
chain_type_kwargs={'prompt':prompt}
|
| 48 |
+
|
| 49 |
+
)
|
| 50 |
+
return qachain
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def qa_bot():
|
| 54 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-miniLM-L6-V2', model_kwargs={'device': 'cpu'})
|
| 55 |
+
db = FAISS.load_local(DB_FAISS_PATH,embeddings)
|
| 56 |
+
llm = load_llm()
|
| 57 |
+
qa_prompt = set_custom_prompt()
|
| 58 |
+
qa = retrieval_QA_chain(llm,qa_prompt,db)
|
| 59 |
+
return qa
|
| 60 |
+
|
| 61 |
+
def final_result(query):
|
| 62 |
+
qa_result = qa_bot()
|
| 63 |
+
response = qa_result({'query':query})
|
| 64 |
+
return response
|
| 65 |
+
|
| 66 |
+
@cl.on_chat_start
|
| 67 |
+
async def start():
|
| 68 |
+
chain = qa_bot()
|
| 69 |
+
msg = cl.Message(content = "Starting the bot...")
|
| 70 |
+
await msg.send()
|
| 71 |
+
msg.content = "Hi, Welcome to the Medical bot. What is your query?"
|
| 72 |
+
await msg.update()
|
| 73 |
+
|
| 74 |
+
cl.user_session.set("chain",chain)
|
| 75 |
+
|
| 76 |
+
@cl.on_message
|
| 77 |
+
async def main(message):
|
| 78 |
+
chain = cl.user_session.get("chain")
|
| 79 |
+
cb = cl.AsyncLangchainCallbackHandler(
|
| 80 |
+
stream_final_answer = True, answer_prefix_tokens = ["FINAL","ANSWER"]
|
| 81 |
+
)
|
| 82 |
+
cb.answer_reached = True
|
| 83 |
+
res = await chain.acall(message, callbacks=[cb])
|
| 84 |
+
answer = res["result"]
|
| 85 |
+
sources = res["source_documents"]
|
| 86 |
+
if sources:
|
| 87 |
+
answer += f"\nSources:" + str(sources)
|
| 88 |
+
else:
|
| 89 |
+
answer += "\nNo sources found"
|
| 90 |
+
|
| 91 |
+
await cl.Message(content=answer).send()
|