Spaces:
Sleeping
Sleeping
File size: 1,270 Bytes
26532db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model and tokenizer directly from Hugging Face Hub
model = AutoModelForCausalLM.from_pretrained("Manasa1/gpt-finetuned-tweets")
tokenizer = AutoTokenizer.from_pretrained("Manasa1/gpt-finetuned-tweets")
# Define the function to generate tweets
def generate_tweet():
prompt = "Generate a tweet that reflects the personality in the fine-tuned dataset:"
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=512)
outputs = model.generate(
inputs["input_ids"],
max_length=280,
num_return_sequences=1,
top_p=0.9,
temperature=0.7
)
generated_tweet = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_tweet.strip()
# Gradio Interface
with gr.Blocks() as app:
gr.Markdown("# AI Tweet Generator")
gr.Markdown("Click the button below to generate a tweet reflecting the fine-tuned personality.")
generate_button = gr.Button("Generate")
output_box = gr.Textbox(label="Generated Tweet")
generate_button.click(generate_tweet, inputs=None, outputs=output_box)
# Launch the app locally
app.launch()
|