Spaces:
Sleeping
Sleeping
File size: 1,138 Bytes
26532db 5630dd5 c2c3e4f 5630dd5 2f4a891 22a0b97 07099e3 22a0b97 5630dd5 b3ba6d3 5630dd5 07099e3 5630dd5 07099e3 22a0b97 5630dd5 eafd83e 5630dd5 c2c3e4f 5630dd5 6efad01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import gradio as gr
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer
# Load the fine-tuned GPT-2 model and tokenizer
model_dir = "Manasa1/finetuned_GPT23"
fine_tuned_model = GPT2LMHeadModel.from_pretrained(model_dir)
fine_tuned_tokenizer = GPT2Tokenizer.from_pretrained(model_dir)
# Create a text-generation pipeline
generator = pipeline('text-generation', model=fine_tuned_model, tokenizer=fine_tuned_tokenizer)
def generate_tweet(input_question):
# Format the prompt
prompt = f"Question: {input_question} Answer:"
# Generate the output
output = generator(prompt, max_length=100, num_return_sequences=1, temperature=0.9, top_p=0.9)
# Extract and return the generated text
return output[0]['generated_text']
# Create the Gradio interface
interface = gr.Interface(
fn=generate_tweet,
inputs=gr.Textbox(label="Enter a prompt/question", placeholder="Write a tweet about startup."),
outputs=gr.Textbox(label="Generated Tweet"),
title="Tweet Generator",
description="Generate tweets based on prompts using a fine-tuned GPT-2 model."
)
# Launch the interface
interface.launch()
|