File size: 1,138 Bytes
26532db
5630dd5
c2c3e4f
5630dd5
2f4a891
22a0b97
 
07099e3
22a0b97
 
 
5630dd5
 
 
 
b3ba6d3
5630dd5
 
07099e3
5630dd5
07099e3
22a0b97
5630dd5
eafd83e
5630dd5
 
c2c3e4f
 
5630dd5
6efad01
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import gradio as gr
from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer

# Load the fine-tuned GPT-2 model and tokenizer
model_dir = "Manasa1/finetuned_GPT23"
fine_tuned_model = GPT2LMHeadModel.from_pretrained(model_dir)
fine_tuned_tokenizer = GPT2Tokenizer.from_pretrained(model_dir)

# Create a text-generation pipeline
generator = pipeline('text-generation', model=fine_tuned_model, tokenizer=fine_tuned_tokenizer)

def generate_tweet(input_question):
    # Format the prompt
    prompt = f"Question: {input_question} Answer:"
    # Generate the output
    output = generator(prompt, max_length=100, num_return_sequences=1, temperature=0.9, top_p=0.9)
    # Extract and return the generated text
    return output[0]['generated_text']

# Create the Gradio interface
interface = gr.Interface(
    fn=generate_tweet,
    inputs=gr.Textbox(label="Enter a prompt/question", placeholder="Write a tweet about startup."),
    outputs=gr.Textbox(label="Generated Tweet"),
    title="Tweet Generator",
    description="Generate tweets based on prompts using a fine-tuned GPT-2 model."
)

# Launch the interface
interface.launch()