File size: 5,422 Bytes
65506c8
 
 
 
 
 
 
 
 
fd73a47
 
65506c8
 
fd73a47
65506c8
 
fd73a47
65506c8
 
 
fd73a47
 
 
 
65506c8
 
fd73a47
65506c8
 
 
 
 
 
 
 
 
 
 
fd73a47
65506c8
 
 
 
 
 
 
fd73a47
65506c8
 
 
 
fd73a47
65506c8
 
 
 
 
 
 
 
 
 
 
fd73a47
65506c8
 
 
 
 
 
 
 
 
 
 
 
 
fd73a47
65506c8
 
 
 
 
 
 
 
 
 
fd73a47
 
 
65506c8
fd73a47
 
65506c8
 
fd73a47
65506c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd73a47
 
 
 
65506c8
fd73a47
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
from PyPDF2 import PdfReader
import pandas as pd
from dotenv import load_dotenv
import json
from datetime import datetime
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import random
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

class TweetDatasetProcessor:
    def __init__(self, fine_tuned_model_name):
        load_dotenv()
        self.tweets = []
        self.personality_profile = {}
        self.vectorizer = TfidfVectorizer(stop_words='english')
        self.used_tweets = set()  # Track used tweets to avoid repetition

        # Load fine-tuned model and tokenizer
        self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
        self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)

    @staticmethod
    def _process_line(line):
        """Process a single line.""" 
        line = line.strip()
        if not line or line.startswith('http'):  # Skip empty lines and URLs
            return None
        return {
            'content': line,
            'timestamp': datetime.now(),
            'mentions': [word for word in line.split() if word.startswith('@')],
            'hashtags': [word for word in line.split() if word.startswith('#')]
        }

    def extract_text_from_pdf(self, pdf_path):
        """Extract text content from PDF file.""" 
        reader = PdfReader(pdf_path)
        text = ""
        for page in reader.pages:
            text += page.extract_text()
        return text

    def process_pdf_content(self, text):
        """Process PDF content and clean extracted tweets.""" 
        if not text.strip():
            raise ValueError("The uploaded PDF appears to be empty.")
        
        lines = text.split('\n')
        clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
        self.tweets = [tweet for tweet in clean_tweets if tweet]

        if not self.tweets:
            raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")

        # Save the processed tweets to a CSV
        df = pd.DataFrame(self.tweets)
        df.to_csv('processed_tweets.csv', index=False)
        return df

    def categorize_tweets(self):
        """Cluster tweets into categories using KMeans.""" 
        all_tweets = [tweet['content'] for tweet in self.tweets]
        if not all_tweets:
            raise ValueError("No tweets available for clustering.")
        
        tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
        kmeans = KMeans(n_clusters=5, random_state=1)
        kmeans.fit(tfidf_matrix)

        for i, tweet in enumerate(self.tweets):
            tweet['category'] = f"Category {kmeans.labels_[i]}"
        return pd.DataFrame(self.tweets)

    def analyze_personality(self, max_tweets=50):
        """Comprehensive personality analysis using a limited subset of tweets.""" 
        if not self.tweets:
            raise ValueError("No tweets available for personality analysis.")

        all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
        analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
        Core beliefs, emotional tendencies, cognitive patterns, etc.
        Tweets for analysis:
        {json.dumps(all_tweets, indent=2)}
        """

        input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
        output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
        personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)

        self.personality_profile = personality_analysis
        return self.personality_profile

    def generate_tweet(self, context="", sample_size=3):
        """Generate a new tweet by sampling random tweets and avoiding repetition.""" 
        if not self.tweets:
            return "Error: No tweets available for generation."

        # Randomly sample unique tweets
        available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
        if len(available_tweets) < sample_size:
            self.used_tweets.clear()  # Reset used tweets if all have been used
            available_tweets = self.tweets

        sampled_tweets = random.sample(available_tweets, sample_size)
        sampled_contents = [tweet['content'] for tweet in sampled_tweets]

        # Update the used tweets tracker
        self.used_tweets.update(sampled_contents)

        # Truncate personality profile to avoid token overflow
        personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile

        # Construct the prompt
        prompt = f"""Based on this personality profile:
        {personality_profile_excerpt}
        Current context or topic (if any):
        {context}
        Tweets for context:
        {', '.join(sampled_contents)}
        **Only generate the tweet. Do not include analysis, explanation, or any other content.**
        """

        input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
        output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
        generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
        
        return generated_tweet