Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load model and tokenizer directly from Hugging Face Hub | |
model = AutoModelForCausalLM.from_pretrained("Manasa1/Llama-2-7b-chat-finetune") | |
tokenizer = AutoTokenizer.from_pretrained("Manasa1/Llama-2-7b-chat-finetune") | |
def generate_tweet(): | |
prompt = "Write a concise, creative tweet reflecting the style and personality in the fine-tuned dataset." | |
# Tokenize the input prompt | |
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=100, padding=True) | |
# Explicitly set the pad_token_id | |
model.config.pad_token_id = model.config.eos_token_id | |
# Generate the tweet with the attention mask | |
outputs = model.generate( | |
inputs["input_ids"], | |
attention_mask=inputs["attention_mask"], # Pass attention_mask explicitly | |
max_length=140, | |
num_return_sequences=1, | |
top_p=0.8, | |
temperature=0.6, | |
repetition_penalty=1.2, # Penalize repetition | |
) | |
# Decode and return the generated tweet | |
generated_tweet = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_tweet.strip() | |
# Gradio Interface | |
with gr.Blocks() as app: | |
gr.Markdown("# AI Tweet Generator") | |
gr.Markdown("Click the button below to generate a tweet reflecting the fine-tuned personality.") | |
generate_button = gr.Button("Generate") | |
output_box = gr.Textbox(label="Generated Tweet") | |
generate_button.click(generate_tweet, inputs=None, outputs=output_box) | |
# Launch the app locally | |
app.launch() | |