Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
import re
|
4 |
|
5 |
-
# Load the fine-tuned
|
6 |
-
model_dir = "Manasa1/
|
7 |
fine_tuned_model = GPT2LMHeadModel.from_pretrained(model_dir)
|
8 |
fine_tuned_tokenizer = GPT2Tokenizer.from_pretrained(model_dir)
|
9 |
|
10 |
-
#
|
11 |
generator = pipeline('text-generation', model=fine_tuned_model, tokenizer=fine_tuned_tokenizer)
|
12 |
|
13 |
# Function to intelligently add relevant hashtags and emojis
|
@@ -38,18 +37,26 @@ def add_relevant_tags(tweet, input_question):
|
|
38 |
hashtags = " ".join(topic_to_hashtags[topic][:2]) # Take up to 2 hashtags
|
39 |
emoji = topic_to_emojis[topic]
|
40 |
tweet = f"{tweet} {emoji} {hashtags}"
|
|
|
|
|
|
|
|
|
41 |
return tweet.strip()
|
42 |
|
|
|
43 |
def generate_tweet(input_question):
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
# Generate the output
|
48 |
-
output = generator(
|
49 |
-
|
50 |
# Extract the generated text
|
51 |
tweet = output[0]['generated_text']
|
52 |
-
|
|
|
|
|
|
|
53 |
# Ensure the tweet is between 200 and 280 characters
|
54 |
tweet_length = len(tweet)
|
55 |
if tweet_length > 280:
|
@@ -58,21 +65,26 @@ def generate_tweet(input_question):
|
|
58 |
if last_period != -1:
|
59 |
tweet = tweet[:last_period + 1]
|
60 |
elif tweet_length < 200:
|
61 |
-
tweet = tweet.ljust(200)
|
62 |
|
63 |
# Add relevant hashtags and emojis
|
64 |
-
tweet = add_relevant_tags(tweet, input_question)
|
|
|
|
|
65 |
|
|
|
|
|
|
|
66 |
return tweet
|
67 |
|
68 |
-
# Create the Gradio
|
69 |
-
|
70 |
-
fn=
|
71 |
-
inputs=
|
72 |
-
outputs=
|
73 |
-
title="Tweet Generator",
|
74 |
-
description="
|
75 |
)
|
76 |
|
77 |
-
# Launch the
|
78 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer, pipeline
|
|
|
3 |
|
4 |
+
# Load the fine-tuned model and tokenizer
|
5 |
+
model_dir = "Manasa1/finetuned_GPT2w"
|
6 |
fine_tuned_model = GPT2LMHeadModel.from_pretrained(model_dir)
|
7 |
fine_tuned_tokenizer = GPT2Tokenizer.from_pretrained(model_dir)
|
8 |
|
9 |
+
# Define the generator pipeline
|
10 |
generator = pipeline('text-generation', model=fine_tuned_model, tokenizer=fine_tuned_tokenizer)
|
11 |
|
12 |
# Function to intelligently add relevant hashtags and emojis
|
|
|
37 |
hashtags = " ".join(topic_to_hashtags[topic][:2]) # Take up to 2 hashtags
|
38 |
emoji = topic_to_emojis[topic]
|
39 |
tweet = f"{tweet} {emoji} {hashtags}"
|
40 |
+
else:
|
41 |
+
# If no topic is detected, don't add emojis/hashtags
|
42 |
+
tweet = f"{tweet} #NoTopic"
|
43 |
+
|
44 |
return tweet.strip()
|
45 |
|
46 |
+
# Function to generate tweet
|
47 |
def generate_tweet(input_question):
|
48 |
+
# Formulate the prompt with clear guidance for tweet generation
|
49 |
+
input_text = f"Write a very short, engaging tweet with emojis and relevant hashtags about {input_question}. Keep it between 200 and 280 characters. Provide only the tweet."
|
50 |
+
|
51 |
+
# Generate the output using the pipeline
|
52 |
+
output = generator(input_text, max_length=280, num_return_sequences=1, temperature=0.7, top_p=0.9)
|
53 |
+
|
54 |
# Extract the generated text
|
55 |
tweet = output[0]['generated_text']
|
56 |
+
|
57 |
+
# Extract the tweet part by splitting based on the prompt
|
58 |
+
tweet = tweet.split(f"Write a very short, engaging tweet with emojis and relevant hashtags about {input_question}")[-1].strip()
|
59 |
+
|
60 |
# Ensure the tweet is between 200 and 280 characters
|
61 |
tweet_length = len(tweet)
|
62 |
if tweet_length > 280:
|
|
|
65 |
if last_period != -1:
|
66 |
tweet = tweet[:last_period + 1]
|
67 |
elif tweet_length < 200:
|
68 |
+
tweet = tweet.ljust(200) # Ensure a minimum length of 200 characters
|
69 |
|
70 |
# Add relevant hashtags and emojis
|
71 |
+
tweet = add_relevant_tags(tweet, input_question)
|
72 |
+
|
73 |
+
return tweet
|
74 |
|
75 |
+
# Gradio interface
|
76 |
+
def gradio_interface(input_question):
|
77 |
+
tweet = generate_tweet(input_question)
|
78 |
return tweet
|
79 |
|
80 |
+
# Create the Gradio app
|
81 |
+
iface = gr.Interface(
|
82 |
+
fn=gradio_interface,
|
83 |
+
inputs="text",
|
84 |
+
outputs="text",
|
85 |
+
title="AI Tweet Generator",
|
86 |
+
description="Enter a topic, and the model will generate a tweet with relevant hashtags and emojis."
|
87 |
)
|
88 |
|
89 |
+
# Launch the app
|
90 |
+
iface.launch()
|