Manasa1 commited on
Commit
b6a091c
·
verified ·
1 Parent(s): ac5fd0d

Delete tweet_analyzer.py

Browse files
Files changed (1) hide show
  1. tweet_analyzer.py +0 -130
tweet_analyzer.py DELETED
@@ -1,130 +0,0 @@
1
- import os
2
- from PyPDF2 import PdfReader
3
- import pandas as pd
4
- from dotenv import load_dotenv
5
- import json
6
- from datetime import datetime
7
- from sklearn.feature_extraction.text import TfidfVectorizer
8
- from sklearn.cluster import KMeans
9
- import random
10
- from transformers import AutoModelForCausalLM, AutoTokenizer
11
- import torch
12
-
13
- class TweetDatasetProcessor:
14
- def __init__(self, fine_tuned_model_name):
15
- load_dotenv()
16
- self.tweets = []
17
- self.personality_profile = {}
18
- self.vectorizer = TfidfVectorizer(stop_words='english')
19
- self.used_tweets = set() # Track used tweets to avoid repetition
20
-
21
- # Load fine-tuned model and tokenizer
22
- self.model = AutoModelForCausalLM.from_pretrained(fine_tuned_model_name)
23
- self.tokenizer = AutoTokenizer.from_pretrained(fine_tuned_model_name)
24
-
25
- @staticmethod
26
- def _process_line(line):
27
- """Process a single line."""
28
- line = line.strip()
29
- if not line or line.startswith('http'): # Skip empty lines and URLs
30
- return None
31
- return {
32
- 'content': line,
33
- 'timestamp': datetime.now(),
34
- 'mentions': [word for word in line.split() if word.startswith('@')],
35
- 'hashtags': [word for word in line.split() if word.startswith('#')]
36
- }
37
-
38
- def extract_text_from_pdf(self, pdf_path):
39
- """Extract text content from PDF file."""
40
- reader = PdfReader(pdf_path)
41
- text = ""
42
- for page in reader.pages:
43
- text += page.extract_text()
44
- return text
45
-
46
- def process_pdf_content(self, text):
47
- """Process PDF content and clean extracted tweets."""
48
- if not text.strip():
49
- raise ValueError("The uploaded PDF appears to be empty.")
50
-
51
- lines = text.split('\n')
52
- clean_tweets = [TweetDatasetProcessor._process_line(line) for line in lines]
53
- self.tweets = [tweet for tweet in clean_tweets if tweet]
54
-
55
- if not self.tweets:
56
- raise ValueError("No tweets were extracted from the PDF. Ensure the content is properly formatted.")
57
-
58
- # Save the processed tweets to a CSV
59
- df = pd.DataFrame(self.tweets)
60
- df.to_csv('processed_tweets.csv', index=False)
61
- return df
62
-
63
- def categorize_tweets(self):
64
- """Cluster tweets into categories using KMeans."""
65
- all_tweets = [tweet['content'] for tweet in self.tweets]
66
- if not all_tweets:
67
- raise ValueError("No tweets available for clustering.")
68
-
69
- tfidf_matrix = self.vectorizer.fit_transform(all_tweets)
70
- kmeans = KMeans(n_clusters=5, random_state=1)
71
- kmeans.fit(tfidf_matrix)
72
-
73
- for i, tweet in enumerate(self.tweets):
74
- tweet['category'] = f"Category {kmeans.labels_[i]}"
75
- return pd.DataFrame(self.tweets)
76
-
77
- def analyze_personality(self, max_tweets=50):
78
- """Comprehensive personality analysis using a limited subset of tweets."""
79
- if not self.tweets:
80
- raise ValueError("No tweets available for personality analysis.")
81
-
82
- all_tweets = [tweet['content'] for tweet in self.tweets][:max_tweets]
83
- analysis_prompt = f"""Perform a deep psychological analysis of the author based on these tweets:
84
- Core beliefs, emotional tendencies, cognitive patterns, etc.
85
- Tweets for analysis:
86
- {json.dumps(all_tweets, indent=2)}
87
- """
88
-
89
- input_ids = self.tokenizer.encode(analysis_prompt, return_tensors='pt')
90
- output = self.model.generate(input_ids, max_length=500, num_return_sequences=1, temperature=0.7)
91
- personality_analysis = self.tokenizer.decode(output[0], skip_special_tokens=True)
92
-
93
- self.personality_profile = personality_analysis
94
- return self.personality_profile
95
-
96
- def generate_tweet(self, context="", sample_size=3):
97
- """Generate a new tweet by sampling random tweets and avoiding repetition."""
98
- if not self.tweets:
99
- return "Error: No tweets available for generation."
100
-
101
- # Randomly sample unique tweets
102
- available_tweets = [tweet for tweet in self.tweets if tweet['content'] not in self.used_tweets]
103
- if len(available_tweets) < sample_size:
104
- self.used_tweets.clear() # Reset used tweets if all have been used
105
- available_tweets = self.tweets
106
-
107
- sampled_tweets = random.sample(available_tweets, sample_size)
108
- sampled_contents = [tweet['content'] for tweet in sampled_tweets]
109
-
110
- # Update the used tweets tracker
111
- self.used_tweets.update(sampled_contents)
112
-
113
- # Truncate personality profile to avoid token overflow
114
- personality_profile_excerpt = self.personality_profile[:400] if len(self.personality_profile) > 400 else self.personality_profile
115
-
116
- # Construct the prompt
117
- prompt = f"""Based on this personality profile:
118
- {personality_profile_excerpt}
119
- Current context or topic (if any):
120
- {context}
121
- Tweets for context:
122
- {', '.join(sampled_contents)}
123
- **Only generate the tweet. Do not include analysis, explanation, or any other content.**
124
- """
125
-
126
- input_ids = self.tokenizer.encode(prompt, return_tensors='pt')
127
- output = self.model.generate(input_ids, max_length=150, num_return_sequences=1, temperature=1.0)
128
- generated_tweet = self.tokenizer.decode(output[0], skip_special_tokens=True).strip()
129
-
130
- return generated_tweet