Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import gradio as gr
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
# Load pre-trained model (or fine-tuned model)
|
5 |
-
model_name = "
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
@@ -13,8 +13,17 @@ def generate_tweet(input_text):
|
|
13 |
"Ensure the response is concise, engaging, and suitable for a diverse audience on social media. "
|
14 |
"Incorporate elements of thought leadership, futuristic perspectives, and practical wisdom where appropriate.").format(input_text)
|
15 |
|
16 |
-
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
|
17 |
-
outputs = model.generate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
19 |
|
20 |
# Extract the tweet text (exclude prompt if included)
|
@@ -41,4 +50,4 @@ def main():
|
|
41 |
# Run Gradio app
|
42 |
if __name__ == "__main__":
|
43 |
app = main()
|
44 |
-
app.launch()
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
# Load pre-trained model (or fine-tuned model)
|
5 |
+
model_name = "/kaggle/working/gpt-finetuned-qa" # Replace with the fine-tuned model name
|
6 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
|
|
|
13 |
"Ensure the response is concise, engaging, and suitable for a diverse audience on social media. "
|
14 |
"Incorporate elements of thought leadership, futuristic perspectives, and practical wisdom where appropriate.").format(input_text)
|
15 |
|
16 |
+
inputs = tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True, padding=True)
|
17 |
+
outputs = model.generate(
|
18 |
+
inputs['input_ids'],
|
19 |
+
attention_mask=inputs['attention_mask'],
|
20 |
+
max_length=280,
|
21 |
+
num_return_sequences=1,
|
22 |
+
top_p=0.95,
|
23 |
+
top_k=50,
|
24 |
+
do_sample=True,
|
25 |
+
pad_token_id=tokenizer.pad_token_id
|
26 |
+
)
|
27 |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
28 |
|
29 |
# Extract the tweet text (exclude prompt if included)
|
|
|
50 |
# Run Gradio app
|
51 |
if __name__ == "__main__":
|
52 |
app = main()
|
53 |
+
app.launch(share=True)
|