import gradio as gr from transformers import pipeline, GPT2LMHeadModel, GPT2Tokenizer # Load the fine-tuned GPT-2 model and tokenizer model_dir = "Manasa1/model_name" fine_tuned_model = GPT2LMHeadModel.from_pretrained(model_dir) fine_tuned_tokenizer = GPT2Tokenizer.from_pretrained(model_dir) # Create a text-generation pipeline generator = pipeline('text-generation', model=fine_tuned_model, tokenizer=fine_tuned_tokenizer) def generate_tweet(input_question): # Format the prompt prompt = f"Question: {input_question} Answer:" # Generate the output output = generator(prompt, max_length=100, num_return_sequences=1, temperature=0.9, top_p=0.9) # Extract and return the generated text return output[0]['generated_text'] # Create the Gradio interface interface = gr.Interface( fn=generate_tweet, inputs=gr.Textbox(label="Enter a prompt/question", placeholder="Write a tweet about startup."), outputs=gr.Textbox(label="Generated Tweet"), title="Tweet Generator", description="Generate tweets based on prompts using a fine-tuned GPT-2 model." ) # Launch the interface interface.launch()