Spaces:
Sleeping
Sleeping
import gradio as gr | |
from phi.agent import Agent | |
from phi.model.google import Gemini | |
from phi.model.groq import Groq | |
from phi.tools.duckduckgo import DuckDuckGo | |
from phi.tools.youtube_tools import YouTubeTools | |
from google.generativeai import upload_file, get_file | |
import google.generativeai as genai | |
from dotenv import load_dotenv | |
import time | |
import tempfile | |
import os | |
from pathlib import Path | |
# Load environment variables | |
load_dotenv() | |
# Google API Key | |
API_KEY = os.getenv("GOOGLE_API_KEY") | |
if API_KEY: | |
genai.configure(api_key=API_KEY) | |
# Groq API Key | |
groq_api_key = os.getenv("Groq_Api_Key") | |
# Initialize Multimodal Agent | |
def initialize_multimodal_agent(): | |
return Agent( | |
name="Video AI Summarizer", | |
model=Gemini(id="gemini-2.0-flash-exp"), | |
tools=[DuckDuckGo()], | |
markdown=True, | |
) | |
# Video Analysis Function | |
def analyze_video(video_file, user_query): | |
if not user_query: | |
return "Please enter a question or insight to analyze the video." | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as temp_video: | |
temp_video.write(video_file.read()) | |
video_path = temp_video.name | |
# Upload and process video | |
try: | |
processed_video = upload_file(video_path) | |
while processed_video.state.name == "PROCESSING": | |
time.sleep(1) | |
processed_video = get_file(processed_video.name) | |
analysis_prompt = f""" | |
Analyze the uploaded video for content and context. | |
Respond to the following query using video insights and supplementary web research: | |
{user_query} | |
Provide a detailed, user-friendly, and actionable response. | |
""" | |
multimodal_agent = initialize_multimodal_agent() | |
response = multimodal_agent.run(analysis_prompt, videos=[processed_video]) | |
# Clean up temporary video file | |
Path(video_path).unlink(missing_ok=True) | |
return response.content | |
except Exception as error: | |
Path(video_path).unlink(missing_ok=True) | |
return f"An error occurred during analysis: {error}" | |
# YouTube Summarization Function | |
def summarize_youtube(video_url): | |
if not video_url.strip(): | |
return "Please enter a valid YouTube video URL." | |
try: | |
youtube_agent = Agent( | |
tools=[YouTubeTools()], | |
model=Groq(id="llama-3.3-70b-versatile", api_key=groq_api_key), | |
show_tool_calls=True, | |
description="You are a YouTube agent. Obtain the captions of a YouTube video and answer questions.", | |
) | |
response = youtube_agent.print_response(f"Summarize this video {video_url}", markdown=True) | |
return response | |
except Exception as e: | |
return f"An error occurred: {e}" | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Phidata Video AI Summarizer Agent π₯π€π¬") | |
with gr.Tab("π₯ Video Upload"): | |
gr.Markdown("### π₯ Analyze Uploaded Video") | |
video_file = gr.File(label="Upload a video file", type="file", file_types=["mp4", "mov", "avi"]) | |
user_query = gr.Textbox(label="What insights are you seeking from the video?", placeholder="Ask anything about the video content.") | |
analyze_button = gr.Button("π Analyze Video") | |
analysis_result = gr.Textbox(label="Analysis Result", interactive=False) | |
analyze_button.click(fn=analyze_video, inputs=[video_file, user_query], outputs=analysis_result) | |
with gr.Tab("π YouTube Summarizer"): | |
gr.Markdown("### π Summarize YouTube Videos") | |
video_url = gr.Textbox(label="Enter YouTube video URL:") | |
summarize_button = gr.Button("Summarize Video") | |
youtube_summary = gr.Textbox(label="Summary", interactive=False) | |
summarize_button.click(fn=summarize_youtube, inputs=video_url, outputs=youtube_summary) | |
# Launch the interface | |
demo.launch() | |